Electronic Supplementary Information

Functional nanonetwork-structured polymers with inbuilt poly(acrylic acid) linings for enhanced adsorption

Weicong Mai, Yuan Zuo, Chuanfa Li, Jinlun Wu, Kunyi Leng, Xingcai Zhang, Ruliang Liu, Ruowen Fu and Dingcai Wu*

Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China E-mail: <u>wudc@mail.sysu.edu.cn</u>

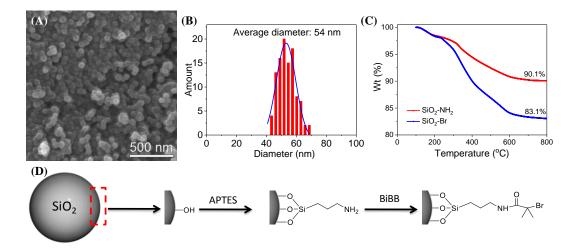
Experimental Section

Materials. tert-Butyl acrylate (tBA; Aladdin, 99%) and styrene (St; Aladdin, AR) were purified by passing through a basic alumina column. CuBr (Aladdin, AR) was purified by washing sequentially with acetic acid and ethanol, filtration and drying, and was stored under nitrogen before use. CuBr₂ (Aladdin, AR), N,N,N',N',N''pentamethyldiethylenetriamine (PMDETA; Aladdin, 99%), anhydrous aluminum chloride Aladdin, AR). dichloromethane (Aladdin, (AlCl₃: HPLC), 3aminopropyltriethoxysilane (APTES; Aladdin, AR), 2-bromoisobutyryl bromide (BiBB; Aladdin, AR), malachite green (Aladdin, AR), methyl violet (Aladdin, AR), silver nitrate (AgNO₃; Aladdin, AR), copper sulfate pentahydrate (Aladdin, AR), lead nitrate (Aladdin, AR), chromium(III) nitrate nonahydrate (Aladdin, AR) and other reagents were used as received.

Synthesis of SiO₂-Br nanospheres. SiO₂ nanospheres were synthesized according to Stöber method. In our synthesis, ethanol (400 mL) and NH₃·H₂O (25 wt % in water, 21 mL) were mixed in a 500 mL three-necked round-bottom flask, and stirred for 10 min at 40 °C. Then 20 mL of tetraethyl orthosilicate (TEOS) was added and stirred for 10 h at 40 °C to obtain SiO₂ nanospheres with diameter of 54 nm. 4 ml of APTES was dropped in a three-necked flask for 2 h, and then the reaction temperature was raised to 85°C for 3 h. The solution was centrifuged at 12000 rpm for 10 min, washed with ethanol and dichloromethane twice, respectively, and then dispersed in 180 mL of dichloromethane. After purging with N₂ for 30 min, 8.4 mL of triethylamine was injected into the solution, and then 7.2 mL of BiBB was added at a rate of 14.4 mL h⁻¹ at 0 °C under stirring. The solution was stirred at 0 °C for 3 h and then at 30 °C for 48 h. The resulting SiO₂-Br (diameter: 54 nm) was centrifuged at 12000 rpm, washed by THF and acetone/water mixture (1:1) for 3 times, respectively, and finally dried in a vacuum oven at 40°C overnight. The synthesis procedures of the SiO₂-Br nanospheres with diameters of 89 and 324 nm were exactly the same as those of the above SiO_2 -Br with diameter of 54 nm, except 10 and 20 mL water were used at the first step, respectively. Synthesis of SiO₂-g-PtBA nanospheres. SiO₂-g-PtBA₈₁ was synthesized according to the following recipe: tBA/SiO₂-Br/CuBr/CuBr/CuBr₂/PMDETA =1000/1/4/0.4/4.4 (molar

ratio). SiO₂-Br, CuBr₂, PMDETA and *t*BA were stirred in a Schlenk flask under a nitrogen atmosphere for 30 min. Then CuBr was added to the mixture and the solution was stirred under a nitrogen atmosphere for 30 min. The reaction was carried out at 60 °C for 6 h. The polymerization was stopped by opening the flask and exposing the catalyst to air. The resulting SiO₂-*g*-P*t*BA₈₁ was precipitated in excess methanol, centrifuged at 12000 rpm for 10 min, and then dried in vacuum at 40 °C overnight (yield: 103%). It should be noted that precipitation, dissolution, washing and centrifugation for several times were needed, thus causing inevitable mass loss. The severe mass loss for SiO₂-*g*-P*t*BA₈₁ nanospheres could be mainly ascribed to their incomplete precipitation in methanol.

Synthesis of SiO2-g-PtBA-b-PS nanospheres. SiO2-g-PtBA-b-PS nanospheres were synthesized according following St/SiO₂-g-PtBAthe recipe: to Br/CuBr/CuBr2/PMDETA =1000/1/4/0.4/4.4 (molar ratio). SiO2-g-PtBA-Br, CuBr2, PMDETA and St were stirred in a Schlenk flask under a nitrogen atmosphere for 30 min. Subsequently, CuBr was added to the mixture, and the solution was stirred under a nitrogen atmosphere for 30 min. The reaction was carried out at 90 °C. The polymerization was stopped by opening the flask and exposing the catalyst to air after 6, 12 or 24 h to obtain DP_{PS} of 6, 145 or 1218. The product (SiO₂-g-PtBA₈₁-b-PS₆, SiO₂-g-PtBA₈₁-b-PS₁₄₅ or SiO₂-g-PtBA₈₁-b-PS₁₂₁₈) was precipitated in excess methanol, washed by THF for three times, centrifuged, and dried in vacuum at 40 °C overnight (yield: 48%, 160% or 735%, respectively). It should be noted that precipitation, dissolution, washing and centrifugation for several times were needed, thus causing inevitable mass loss. The severe mass loss for SiO₂-g-PtBA₈₁-b-PS₆ nanospheres could be mainly ascribed to their incomplete precipitation in methanol.


Preparation of FNNSP-PAA products. AlCl₃ (0.84 g) and CCl₄ (18 mL) was stirred in a 50 mL three-necked round-bottom flask for 30 min. The temperature was raised to 75°C, and then SiO₂-*g*-P*t*BA₈₁-*b*-PS₁₂₁₈ (0.3 g) was added under stirring to conduct the hypercrosslinking for 24 h. The product was filtered, washed three times with a mixture of acetone and hydrochloric acid, and then dried in vacuum at 40 °C. The resulting SiO₂-*g*-PAA₈₁-*b*-*x*PS₁₂₁₈ was etched with HF, thus obtaining the target FNNSP-PAA product FNNSP-PAA $_{81}$ -*b*-PS $_{1218}$. Other FNNSP-PAA products were also prepared according to the above method.

Characterization. The nanostructures of the samples were investigated by a Hitachi S-3400 scanning electron microscope (SEM) and a FEI Tecnai G2 Spirit transmission electron microscope (TEM). FTIR spectra were conducted at room temperature on a Bruker Equinox 55 Fourier transform infrared spectroscopy. The molecular weight and molecular weight distribution of the polymers were measured on a Waters gel permeation chromatography (GPC). Molecular weights were calibrated based on polystyrene standards. THF was used as an eluent at a flow rate of 1.0 mL min⁻¹. The ¹H NMR spectrum was conducted by a 400 MHz Bruker advance III spectrometer. N₂ adsorption measurements were carried out using a Micromeritics ASAP 2020 analyzer at 77 K. The BET surface area (S_{BET}) was determined by Brunauer-Emmett-Teller (BET) theory. The micropore surface area (S_{mic}) and meso-/macropore surface area (S_{ext}) were determined by t-plot method. The pore size distribution was analyzed by original density functional theory (DFT) combined with non-negative regularization and medium smoothing. The total pore volume (Vtotal) was calculated according to the amount adsorbed at a relative pressure P/P_0 of about 0.99. Thermogravimetric analysis (TGA) was conducted on a NETZSCH TG 209F1 Iris instrument. The grafting density of hairy nanospheres was calculated according to a reported method.¹

Adsorption experiments toward malachite green and methyl violet. The concentration of malachite green and methyl violet was detected by Shimadzu UV-Vis-NIR spectrophotometer. Malachite green and methyl violet adsorption experiments were performed as follows. FNNSP-PAA₈₁-*b*-PS₁₂₁₈ (25 mg) was soaked into a solution (water/ethanol=24/1) of malachite green or methyl violet (40 ml, 100 mg L⁻¹), and vibrated in a thermostatic shaker at 25 °C. At predetermined time intervals, 0.3 ml of solution was taken and diluted for UV-Vis test. The adsorption capacity was calculated by measuring malachite green or methyl violet concentration before and after adsorbed by FNNSP-PAA₈₁-*b*-PS₁₂₁₈. NNSP-PS was subjected to the same adsorption procedure described above and used as a control.

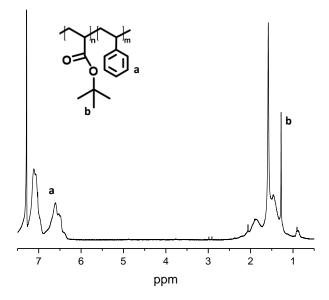
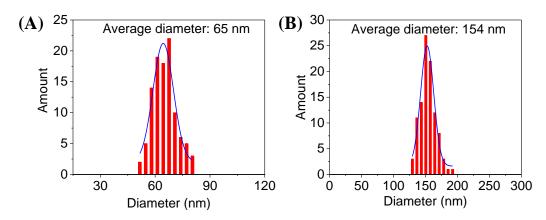
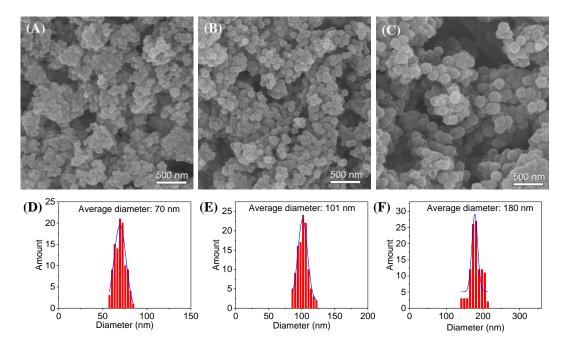
Adsorption experiments toward heavy metal ions. The concentration of heavy metal

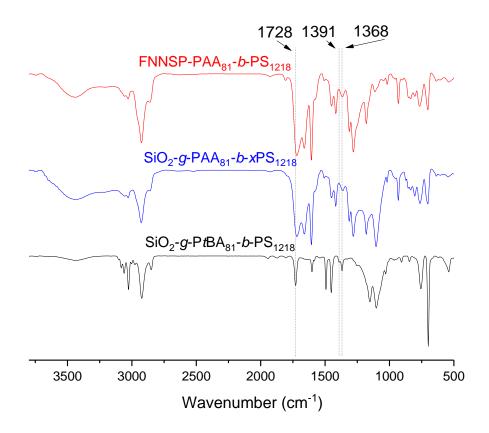
ions was detected by a PerkinElmer Optima 8300 inductively coupled plasma optical emission spectrometry (ICP-OES). Adsorption experiments toward heavy metal ions were performed as follows: FNNSP-PAA₈₁-*b*-PS₁₂₁₈ (4 mg) was added into an aqueous solution of Cu²⁺, Ag⁺, Pb²⁺ or Cr³⁺ (10 ml, 10 ppm), and stirred at 25 °C for 24 h. Then the solution was withdrawn and filtrated for ICP-AES test. The adsorption capacity was calculated by measuring concentrations of heavy metal ions before and after adsorbed by FNNSP-PAA₈₁-*b*-PS₁₂₁₈. NNSP-PS was subjected to the same adsorption procedure described above and used as a control.

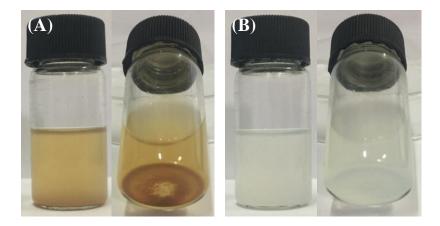
Fig. S1 (A) SEM image, and (B) particle size distribution from SEM image analysis for SiO₂ nanospheres of diameter 54 nm; (C) TGA curves for APTES-modified SiO₂ (SiO₂-NH₂) and SiO₂-Br nanospheres; (D) scheme illustration of surface modification of SiO₂ nanospheres for introducing the Br-containing ATRP initiating sites.

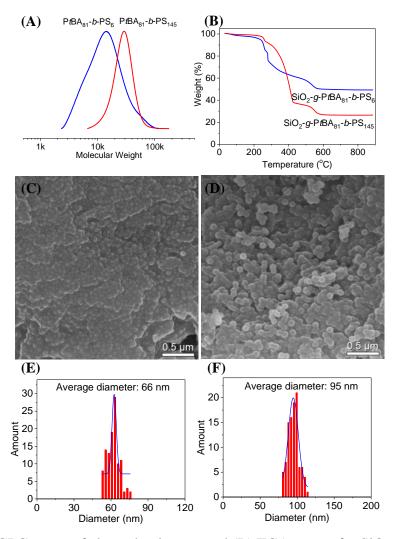
According to the TGA results of SiO_2 -Br and SiO_2 -NH₂ nanospheres in Fig. S1C, the density of Br atom on the surface of SiO_2 -Br nanoparticles was calculated as follows:

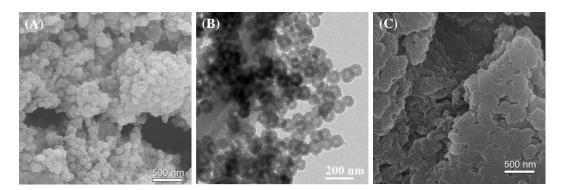
$$[Br] = [C_4H_5OBr] = \frac{wt\%(C_4H_5OBr)}{M(C_4H_5OBr)} = \frac{1 - wt\%(SiO_2 - NH_2)}{M(C_4H_5OBr)} = \frac{1 - \frac{83.1\%}{90.1\%}}{149}$$
$$= 0.000521 \ mol \ g^{-1} = 0.521 \ mmol \ g^{-1}$$


Fig. S2 ¹H NMR spectrum of the cleaved PtBA₈₁-*b*-PS₁₂₁₈ (solvent: CDCl₃).


Fig. S3 Particle size distributions from SEM image analysis for (A) SiO₂-*g*-P*t*BA₈₁ and (B) SiO₂-*g*-P*t*BA₈₁-*b*-PS₁₂₁₈.


Fig. S4 SEM images and particle size distributions from SEM image analysis for (A, D) SiO₂-*g*-PAA₈₁-*b*-*x*PS₆, (B, E) SiO₂-*g*-PAA₈₁-*b*-*x*PS₁₄₅ and (C, F) SiO₂-*g*-PAA₈₁-*b*-*x*PS₁₂₁₈.


Fig. S5 Fourier transform infrared spectra for SiO_2 -*g*-PtBA₈₁-*b*-PS₁₂₁₈, SiO_2 -*g*-PAA₈₁*b*-*x*PS₁₂₁₈ and FNNSP-PAA₈₁-*b*-PS₁₂₁₈.

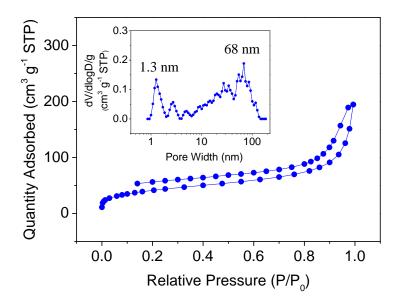
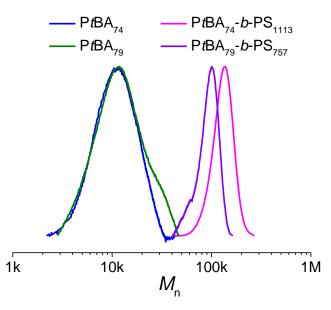
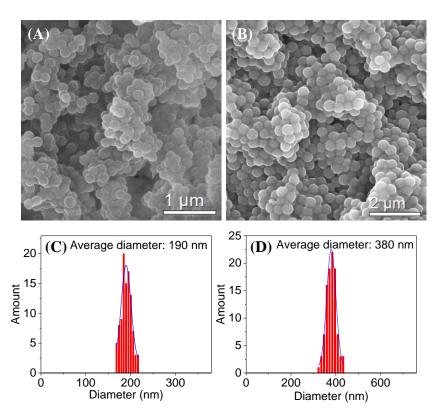
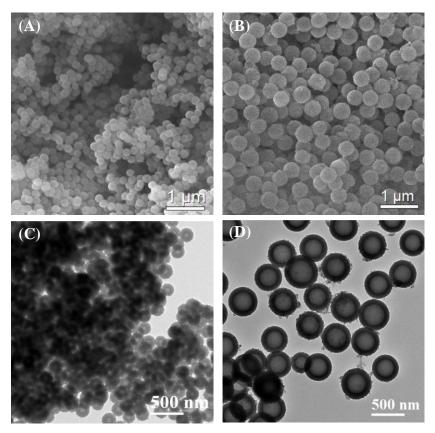
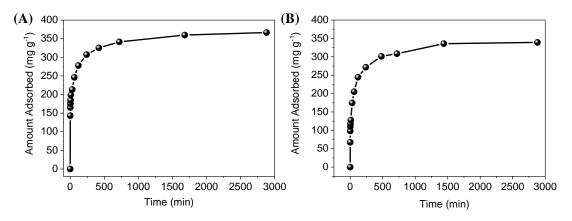

Fig. S6 Photographs of dispersions of (A) FNNSP-PAA₈₁-b-PS₁₂₁₈ and (B) SiO₂-g-PtBA₈₁-b-PS₁₂₁₈ in THF. The concentration for these two samples is 5 mg mL⁻¹.


Fig. S7 (A) GPC traces of cleaved polymers and (B) TGA curves for SiO_2 -*g*-P*t*BA₈₁-*b*-PS₆ and SiO_2 -*g*-P*t*BA₈₁-*b*-PS₁₄₅; SEM images and particle size distributions from SEM image analysis for (C, E) SiO_2 -*g*-P*t*BA₈₁-*b*-PS₆ and (D, F) SiO_2 -*g*-P*t*BA₈₁-*b*-PS₁₄₅.


Fig. S8 (A) SEM and (B) TEM images of FNNSP-PAA₈₁-*b*-PS₁₄₅; (C) SEM image of FNNSP-PAA₈₁-*b*-PS₆.


Fig. S9 N₂ adsorption-desorption isotherm and DFT pore size distribution curve (the inset) for FNNSP-PAA₈₁-*b*-PS₁₄₅.


Fig. S10 SEM images and particle size distributions from SEM image analysis for SiO₂ nanosphere with diameter of (A, C) 89 nm and (B, D) 324 nm.


Fig. S11 GPC traces of cleaved polymers for SiO_{2,89nm}-*g*-P*t*BA₇₄, SiO_{2,324nm}-*g*-P*t*BA₇₉, SiO_{2,89nm}-*g*-P*t*BA₇₄-*b*-PS₁₁₁₃ and SiO_{2,324nm}-*g*-P*t*BA₇₉-*b*-PS₇₅₇.

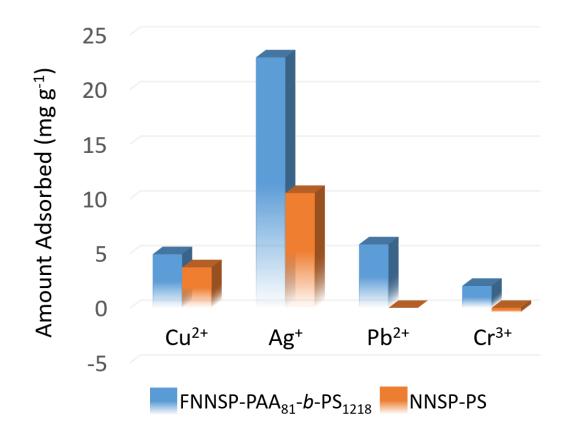

Fig. S12 SEM images and particle size distributions from SEM image analysis for (A, C) SiO₂-*g*-P*t*BA₇₄-*b*-PS₁₁₁₃ and (B, D) SiO₂-*g*-P*t*BA₇₉-*b*-PS₇₅₇.

Fig. S13 SEM and TEM images of (A, C) FNNSP-P*t*BA₇₄-*b*-PS₁₁₁₃ and (B, D) hollow microporous polymer nanosphere.

Fig. S14 Adsorption curves of FNNSP-PAA₈₁-*b*-PS₁₂₁₈ towards (A) malachite green and (B) methyl violet solution (250 mg L^{-1}).

Fig. S15 Adsorption capacities of FNNSP-PAA₈₁-*b*-PS₁₂₁₈ and NNSP-PS towards different heavy metal ions (10 ppm).

Sample	$\frac{S_{BET}}{(m^2 g^{-1})}$	S_{mic} (m ² g ⁻¹)	$\frac{S_{ext}}{(m^2 g^{-1})}$	V_{total} (cm ³ g ⁻¹)
FNNSP-PAA ₈₁ -b-PS ₁₂₁₈	444	122	322	0.43
FNNSP-PAA ₈₁ -b-PS ₁₄₅	150	10	141	0.30

 Table S1. Pore structure parameters of FNNSP-PAA products.

Table S2. Summary of adsorption capacities toward malachite green (MG) and methyl violet (MV) for FNNSP-PAA₈₁-*b*-PS₁₂₁₈ and other reported adsorbents.

Adsorbent	S _{BET} (m ² g ⁻¹)	С _{0,MG} (mg L ⁻¹)	MG adsorption capacity (mg g ⁻¹)	Rмд (%)	С _{0,МV} (mg L ⁻¹)	MV adsorption capacity (mg g ⁻¹)	Rмv (%)	Ref.
FNNSP-PAA ₈₁ - <i>b</i> -PS ₁₂₁₈	444	100	155	97.1	100	151	94.4	This work
FNNSP-PAA ₈₁ - <i>b</i> -PS ₁₂₁₈	444	250	367	91.7	250	339	84.8	This work
Activated carbon	1000	100	49.75	99.5	/	/	/	[2]
Carbon nanotube/ polyaniline composites	/	16	13.95	88	/	/	/	[3]
Graphene oxide/ cellulose bead composites	/	10	30.09	96	/	/	/	[4]
Carboxymethyl cellulose-acrylic acid	594.45	30	149.9	99.9	/	/	/	[5]
BiOI/Ag ₃ VO ₄	36.5	25	24.25	97	/	/	/	[6]
Palygorskite modified with ammonium sulfide	190	/	/	/	300	218.11	72.7	[7]
Hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica	398	/	/	/	350	378.8	99.1	[8]
Activated carbon derived from phragmites australis	1362	/	/	/	75	147.02	78.4	[9]
Crosslinked starch microsphere	0.6	/	/	/	250	91.16	36.5	[10]
Granulated mesoporous carbon	960	/	/	/	20	94	94	[11]

Note: C_{0,MG}, R_{MG}, C_{0,MV} and R_{MV} denote initial concentration of MG, MG removal efficiency, initial concentration

of MV and MV removal efficiency, respectively.

Sample	Cu ²⁺ (mg g ⁻¹)	Ag ⁺ (mg g ⁻¹)	Pb ²⁺ (mg g ⁻¹)	Cr ³⁺ (mg g ⁻¹)
FNNSP-PAA ₈₁ - <i>b</i> -PS ₁₂₁₈	4.9	22.9	5.8	2.0
NNSP-PS	3.7	10.5	0	-0.4

Table S3. Adsorption capacities of FNNSP-PAA₈₁-*b*-PS₁₂₁₈ and NNSP-PS towardsdifferent heavy metal ions

References

- 1. J. Pyun, S. Jia, T. Kowalewski, G. D. Patterson and K. Matyjazewski, *Macromolecules*, 2003, 36, 5094-5105
- Y. Onal, C. Akmil-Basar and C. Sarıcı-Ozdemir, J. Hazard. Mater., 2007, 146, 194-203
- Y. Zeng, L. Zhao, W. Wu, G. Lu, F. Xu, Y. Tong, W. Liu and J. Du, J. Appl. Polym. Sci., 2013, 127, 2475-2482
- X. Zhang, H. Yu, H. Yang, Y. Wan, H. Hu, Z. Zhai and J. Qin, J. Colloid Interf. Sci., 2015, 437, 277
- 5. G. Zhang, L. Yi, H. Deng and P. Sun, J. Environ. Sci., 2014, 26, 1203-1211
- S. Wang, Y. Guan, L. Wang, W. Zhao, H. He, J. Xiao, S. Yang and C. Sun, *Appl. Catal. B-Environ.*, 2015, 168, 448-457
- 7. G. Tian, W. Wang, Y. Kang and A. Wang, J. Environ. Sci., 2016, 41, 33-43
- S. Ghorai, A. Sarkar, M. Raoufi, A. B. Panda, H. Schonherr and S. Pal, ACS Appl. Mater. Interfaces, 2014, 6, 4766-4777
- S. Chen, J. Zhang, C. Zhang, Q. Yue, Y. Li and C. Li, *Desalination*, 2010, 252, 149-156
- 10. Q. Lin, J. Pan, Q. Lin and Q. Liu, J. Hazard. Mater., 2013, 263, 517-524
- 11. Y. Kim, J. Bae, H. Park, J. Suh and Y. You, Water Res., 2016, 101, 187-194