ELECTRONIC SUPPORTING INFORMATION

Hetero-layered Hybrid Dendrimers with Optimized Sugar Head

Groups for Enhancing Carbohydrate-Protein Interactions

Rahul S. Bagul^a, Maryam Hosseini^a, Tze Chieh Shiao^a, Nadim K. Saadeh^b and René Roy^a*

^aPharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, Québec H3C 3P8, CANADA. E-mail: <u>roy.rene@uqam.ca</u>

^b Department of Chemistry (Mass Spectrometry), MAASS Chemistry Building, 801, rue Sherbrooke Ouest, Centre-ville, Montréal, Québec, H3A OB8, CANADA. Fax: +1-514-398-3797; Tel: +1-514-398-6178.

Content

¹H, ¹³C NMR spectra and HRMS spectra

Original DLS curves for compounds 16, 19, 27 in the presence/absence of their corresponding lectins ConA and LecA from *Pseudomonas aeruginosa* S38-S42

Page

S2-S37

Figure S1. ¹H NMR spectrum of 2 (300 MHz, CDCl₃)

Figure S2. ¹³C NMR spectrum of 2 (75 MHz, CDCl₃)

Figure S3. ESI-MS spectrum of 2

Figure S4. ¹H NMR spectrum of 3 (300 MHz, CDCl₃)

Figure S5. ¹³C NMR spectrum of 3 (150 MHz, CDCl₃)

Figure S6. ESI-MS spectrum of 3

Figure S7. ¹H NMR spectrum of 4 (300 MHz, CDCl₃)

Figure S8. ¹³C NMR spectrum of 4 (75 MHz, CDCl₃)

Figure S9. ESI-MS spectrum of 4

Figure S10. ¹H NMR spectrum of 5 (300 MHz, CDCl₃)

Figure S11. ¹³C NMR spectrum of 5 (75 MHz, CDCl₃)

Figure S12. ESI-MS spectrum of 5

Figure S13. ¹H NMR spectrum of 7 (300 MHz, CDCl₃).

Figure S14. ¹³C NMR spectrum of 7 (75 MHz, CDCl₃).

Figure S15. ESI-MS spectrum of compound 7

Figure S16. ¹H NMR spectrum of 9 (300 MHz, CDCl₃).

Figure S17. ¹³C NMR spectrum of 9 (75 MHz, CDCl₃).

Figure S18. ESI-MS spectrum of 9

Figure S19. ¹H NMR spectrum of 10 (300 MHz, CDCl₃).

Figure S20. ¹³C NMR spectrum of 10 (75 MHz, CDCl₃)

Figure S21. ESI-MS spectrum of compoud 10

Figure S22. ¹H NMR spectrum of 11 (300 MHz, MeOH-d₄).

Figure S23. 13 C NMR spectrum of 11 (75 MHz, MeOH-d₄).

Figure S24. ¹H NMR Spectrum of 12 (300 MHz, $CDCl_3$) -S13-

Figure S25. ¹³C NMR spectrum of 12 (75 MHz, CDCl₃)

Figure S26. ESI-MS spectrum of compound 12

Figure S27. ¹H NMR Spectrum of 14 (300 MHz, CDCl₃)

Figure S28. ¹³C NMR Spectrum of 14 (75 MHz, CDCl₃)

Figure S29. ESI-MS spcterum of compound 14

Figure S30. ¹H NMR Spectrum of 15 (300 MHz, CDCl₃)

Figure S31. ¹³C NMR Spectrum of 15 (75MHz, CDCl₃)

Figure S32. HRMS spectrum of compound 15

Figure S33. ¹H NMR Spectrum of 16 (300MHz, MeOH-d₄)

Figure S34. ¹³C NMR spectrum of **16** (75 MHz, MeOH- d_4)

Figure S36. ¹H NMR spectrum of 18 (300 MHz, CDCl₃)

Figure S37. ¹³C NMR spectrum of 18 (75 MHz, CDCl₃)

Figure S38. ³¹P{¹H} NMR spectrum of 18 (122 MHz, CDCl₃)

Figure S39. ¹H NMR spectrum of 19 (300 MHz, MeOH-d₄)

Figure S40. ¹³C NMR spectrum of 19 (75 MHz, MeOH-d₄)

Figure S41. ³¹P{¹H} NMR spectrum of 19 (122 MHz, MeOH-d₄)

Figure S42. MALDI-TOF spectrum of 19

Figure S43. ¹H NMR spectrum of 20 (300 MHz, CDCl₃)

Figure S44. ¹³C NMR spectrum of **20** (75 MHz, CDCl₃)

Figure S45. HRMS spectrum of compound 20

Figure S46. ¹H NMR of Dendron 23(300 MHz, CDCl₃)

Figure S47. ¹³C NMR spectrum of Dendron **23** (75 MHz, CDCl₃) \

Figure S48. HRMS spectrum of compound 23

Figure S49. ¹H NMR of Dendron 24 (300 MHz, CDCl₃)]

Figure S50. ¹³C NMR spectrum of dendron 24 (75 MHz, CDCl₃)

Figure S51. HRMS spectrum of compoud 24

Figure S52. ¹H NMR spectrum of dendron **25** (300 MHz, CDCl₃)

Figure S53. ¹³C NMR spectrum of dendron **25** (75 MHz, CDCl₃)

--- End Of Report ---

Figure S54. HRMS spectrum of compound 25

Figure S55. ¹H NMR spectrum of second generation hybrid dendrimer 26 (600 MHz, CDCl₃)

Figure S56. ¹³C NMR spectrum of second generation hybrid dendrimer 26 (150 MHz, CDCl₃)

Figure S57. ³¹P{¹H}-NMR spectrum of second generation hybrid dendrimer **26** (122 MHz, CDCl₃)

Figure S58. MALDI-TOF analysis of compound 26

Figure S60. ¹³C NMR spectrum of second generation hybrid dendrimer **27** (150 MHz, MeOH- d_4)

Figure S61. ${}^{31}P{}^{1}H$ NMR spectrum of second generation hybrid dendrimer 27 (122 MHz, MeOH-d₄).

D:\Data\2017 Maldi data folders\Roy (UQAM)\170426-anchdb30dry-Roy-Rahul-RB-II-048-OH- lp clinprot\0_014\1\1SLin

Bruker Daltonics flexAnalysis Figure S62. MALDI-TOF analysis of 27

			Size (d.nm):	% Number:	St Dev (d.n
Z-Average (d.nm):	206.6	Peak 1:	176.4	100.0	46.53
Pdl:	0.021	Peak 2:	0.000	0.0	0.000
Intercept:	0.942	Peak 3:	0.000	0.0	0.000
Result quality :	Refer to quality	report			

Figure S63. DLS curves of kinetics of ConA in the presence of monomer **16** as function of time (curves for few initial points are shown).

Results

			Size (d.nm):	% Number:	St Dev (d.n
Z-Average (d.nm):	196.9	Peak 1:	153.1	100.0	47.10
Pdl:	0.055	Peak 2:	0.000	0.0	0.000
Intercept:	0.922	Peak 3:	0.000	0.0	0.000
Result quality :	Refer to quality report				

Figure S64. DLS curves of kinetics of LecA in the presence of monomer **16** as function of time (curves for few initial points are shown).

Results					
			Size (d.nm):	% Number:	St Dev (d.n
Z-Average (d.nm):	291.3	Peak 1:	221.1	100.0	55.85
Pdl:	0.340	Peak 2:	5227	0.0	718.9
Intercept:	0.941	Peak 3:	0.000	0.0	0.000
Result quality :	Refer to quality report				

Figure S65. DLS curves of kinetics of ConA in the presence of glycodendrimer 19 as function of time (curves for few initial points are shown).

Results

			Size (d.nm):	% Number:	St Dev (d.n
Z-Average (d.nm):	1719	Peak 1:	1140	100.0	232.0
Pdl:	0.389	Peak 2:	0.000	0.0	0.000
Intercept:	0.952	Peak 3:	0.000	0.0	0.000
Result quality :	Refer to quality	report			

Figure S66. DLS curves of kinetics of ConA in the presence of glycodendrimer **27** as a function of time (curves for few initial points are shown).

Results

			Size (d.nm):	% Number:	St Dev (d.n
Z-Average (d.nm):	350.3	Peak 1:	150.2	100.0	98.73
PdI:	0.274	Peak 2:	0.000	0.0	0.000
Intercept:	0.950	Peak 3:	0.000	0.0	0.000
Result quality :	Refer to quality	report			

Figure S67. DLS curves of kinetics of LecA in the presence of glycodendrimer 19 as function of time (curves for few initial points are shown).

Size (d.nm): % Number: St Dev (d.n... 1140 96.2 308.5 Z-Average (d.nm): 1779 Peak 1: Pdl: 0.438 Peak 2: 5200 3.8 727.8 0.000 0.0 0.000 Intercept: 0.910 Peak 3: Result quality : Refer to quality report

Results

Figure S68. DLS curves of kinetics of LecA in the presence of glycodendrimer **27** as function of time (curves for few initial points are shown).