Colorless polyimides derived from 2R, 5R, 7S, 10S-

naphthanetetracarboxylic dianhydride

Xiaofan Hu, ^{a, b} Jingling Yan,* ^a Yongxia Wang, ^a Hongliang Mu, ^a Zikun Wang, ^a Haiyang Cheng, ^d Fengyu Zhao, ^d and Zhen Wang* ^{a, c}

^a Laboratory of Polymer Composites Engineering, ^c State Key Laboratory of Polymer Physics and Chemistry, ^d Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.

^b University of Chinese Academy of Sciences, No.19(A) Yuanquan Road, Shijingshan District, Beijing 100049, China

E-mail: jyan@ciac.ac.cn

List of Contents for Supplementary Materials:

Figure S1. ¹H NMR spectra of HNTDA in DMSO-*d*₆

Figure S2. ¹³C NMR spectra of HNTDA in DMSO-*d*₆

Figure S3. Representative ¹H NMR spectra of HNTDA- and HPMDA-based polyimides

Figure S4. Representative FT-IR spectra of HNTDA- and HPMDA-based polyimides

Figure S5. TMA curves of HNTDA- and HPMDA-based polyimides

Table S1. Solubility of HNTDA- and HPMDA-based polyimides

Table S2. Color coordinates of HNTDA- and HPMDA-based polyimide films

 $\begin{array}{c} 3.05\\$

Figure S1. ¹H NMR spectra of HNTDA in DMSO- d_6 .

Figure S2. ¹³C NMR spectra of HNTDA in DMSO- d_6 .

Figure S3. Representative ¹H NMR spectra of HNTDA- and HPMDA-based polyimides

Figure S4. Representative FT-IR spectra of HNTDA- and HPMDA-based polyimides

Figure S5. TMA curves of HNTDA- and HPMDA-based polyimides

Table S1. Solubility of HNTDA- and HPMDA-based polyin	nides.
---	--------

Polyimide	<i>m</i> -Cresol	NMP	DMAc	DMSO	Chloroform	1,4-dioxane	THF	
HNTDA/ODA	++	++	++	++	-	-	-	
HNTDA/APB	++	++	+-	+-	-	-	-	
HNTDA/BAPB	++	++	++	++	-	-	-	
HNTDA/MBCHA	+	+-	+-	+-	-	-	-	
HPMDA/ODA	++	++	++	++	-	-	-	

HPMDA/APB	+	++	++	++	-	-	-
HPMDA/MBCHA	+	+	+-	+-	-	-	-

Key: ++: soluble at room temperature; +: soluble upon heating; +-: partially soluble upon heating; -: insoluble; NMP: *N*-methyl-2-pyrrolidone; DMAc: N, N-dimethylacetamide; DMSO: dimethyl sulfoxide; THF: tetrahydrofuran.

Table S2. Color coordinates of HNTDA- and HPMDA-based polyimide films^a.

Polyimide	L^*	<i>a</i> *	<i>b</i> *
HNTDA/ODA	94.86	0.01	1.68
HNTDA/APB	94.84	-0.06	2.02
HNTDA/BAPB	94.28	0.09	2.44
HNTDA/MBCHA	95.37	-0.01	1.21
HPMDA/ODA	95.44	0.09	0.82
HPMDA/APB	95.22	0.09	1.10
HPMDA/MBCHA	96.04	-0.01	0.75

^a The color parameters were calculated according to a CIE LAB equation, and the film thickness was around 20

 μ m. L* refers to lightness; 100 means white, while 0 indicates black. A positive a* means red color, a negative a* indicates green color. A positive b* means yellow color, a negative b* indicates blue color.