High Photovoltaic Performance of As-casting Device Based on New Quinoxaline-based Donor-Acceptor Copolymers

Mingzhi Zhao,^{1, 2} Zi Qiao,^{1, 2} Xiaofeng Chen,^{1, 2} Chenglin Jiang,^{1, 2} Xiaoyu Li,^{2*}

Yongfang Li,3 and Haiqiao Wang^{1,2*}

1. State Key Laboratory of Organic-Inorganic Composite, Beijing University of

Chemical Technology, Beijing 100029, China

2. Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education,

Beijing University of Chemical Technology, Beijing 100029, China

3. Beijing National Laboratory for Molecular Sciences, Institute of Chemistry,

Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: e-mail: wanghaiqiao@mail.buct.edu.cn (H. Wang);

lixy@mail.buct.edu.cn (X. Li)

Content

1. GPC plot	Figure S1
2. TGA plots of the polymers	Figure S2
3. Thin film cyclic voltammograms of polymers	Figure S3
4. Energy level diagrams	Figure S4
5. Current density–voltage characteristics of the PSCs	Figure S5
6. $J^{1/2} \sim V_{\text{eff}}$ characteristics	Figure S6

7.	AFM topography	Figure S7
8.	Photovoltaic performances	Table S1
9.	1H-NMR and 13C-NMR spectra	Figure S8-S16

MW Averages

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD
1	108129	45919	169254	410043	654387	140562	3.68593

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		16.58	19.38	22.93	17.4603	100	3343.07	100

(b)

MW Averages

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD		
1	70281	40304	108837	223197	341242	94161	2.7004		
Processed	Peaks								
Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Heigl (mV)	ht %H	leight	Area (mV.secs)	% Area
1		17.17	19.78	22.68	3.0904	1	100	518.688	100

Figure S1 GPC plot of polymers: (a) PBDT-DFQX-TTSEH (b) PBDT-DFQX-TTSC8

Figure S2 TGA plots of the polymers with a heating rate of 10 C min⁻¹ under a N_2 atmosphere.

(a)

Figure S3 Thin film cyclic voltammograms of PBDTTS-EH-Qx and PBDTTS-C8-Qx in 0.1 M Bu_4NPF_6 acetonitrile solution at a scan rate of 100 mV·s⁻¹

Figure S4 Energy level diagrams for PBDT-DFQX-TT, PBDT-DFQX-TTSEH and PBDT-DFQX-TTSC8

Figure S5 Current density–voltage characteristics of the PSCs based on polymer: $PC_{71}BM$ blends with different treatment under illumination of AM1.5, 100 mW cm⁻²

Figure S6 $J^{1/2} \sim V_{\text{eff}}$ characteristics for the devices based on the blend films. Solid lines were the fitting lines of the data.

Figure S7 AFM topography ($2.5 \times 2.5 \mu m^2$) of blend films treat both with DIO and thermal annealing. (a) for PBDT-DFQX-TTSEH (b) for PBDT-DFQX-TTSC8

Table S1 Photovoltaic performances of the PSCs based on polymer/PC71BM

under the illumination of AM1.5G, 100 mW · cm⁻².

Polymer	Ratio ^a	Treatment	$V_{oc}(V)$	$(mA \cdot cm^{-2})$	FF(%)	PCE ^b (%)
)		
EH	1:1.2	3%DIO,TA	0.83	12.05	59.11	$5.94(5.47 \pm 0.36)$
C8	1:1.2	3%DIO,TA	0.81	14.04	61.54	$6.9(6.80 \pm 0.17)$

^a Polymer/PC₇₁BM weight ratio. ^b Optimized data. Average data were in the parentheses and obtained from 10 devices.

Figure S8 13C-NMR of BDT-TSC8

Figure S10 1H-NMR of BDT-TSC8-2Sn

Figure S14 1H-NMR of DFQx-TEH-2T-2Br

Figure S16 1H-NMR of PBDT-DFQx-TTSEH