Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Figure SI1: Walling plot for the polymerization of AMPS monomer targeting a DP of 20 with the chain transfer agent BDMAT (in water at 90 °C)

Figure SI2: ¹H NMR spectra (D_2O , 300 MHz) showing the chain transfer agent and monomer consumption after 16 minutes of the polymerization of AMPS with BDMAT at 90 °C in water.

Figure SI3: Conversion (Blue) and pseudo-first order plot (Black) versus the time for the synthesis of the random copolymer $P(AMPS)_{40}$ -co- $P(HEAm)_{40}$ synthesized in water at 90 °C with VA-086.

Block	1	2	3	4	5	6	7	8
Monomer	AMPS							
DP _{targeted}	10	10	10	10	10	10	10	10
m _{monomer added} (mg)	580	580	580	580	580	580	580	580
m _{cta} (mg)	64	-	-	-	-	-	-	-
m _{vA-086 added} (mg)	1.22	0.85	0.82	0.89	0.96	1.03	1.11	1.17
m _{NaOH} (mg)	5.06	-	-	-	-	-	-	-
m _{H2O} (mg)	358	-	-	-	-	-	-	-
V _{total} (mL) ^a	1.7	2.5	3.4	4.3	5.2	6.0	6.9	7.8
VA-086 _{consumed} (%) ^b	20	11	11	11	11	11	11	11
m _{VA-086 total} (mg) ^c	1.22	1.83	2.46	3.08	3.72	4.35	4.99	5.62
[AMPS] ₀ (M) ^d	1.50	1.00	0.74	0.59	0.49	0.42	0.37	0.32
[CTA] _t /[VA-086] ₀	60	40	30	24	20	17	15	13
[CTA] _t /[VA-086] _{consumed}	301	380	282	225	186	159	139	123
L (%) ^e	99.7	99.8	99.8	99.8	99.8	99.8	99.8	99.8
Cumulative L (%) ^f	99.7	99.5	99.3	99.1	99.0	98.8	98.6	98.5

Table SI1: Conditions used for the preparation of (P(AMPS₁₀))₈ via RAFT polymerization in phosphate buffer solution at 90 °C.

^a Represents the sum of the volume of the monomer added + V_{total} from the previous block. ^b Determined using the following equation VA-086_{consumed} = [VA-086]_{consumed}/[VA-086]₀ *100 = 2*f*(1-exp(-*k*_dt))(1-*f_c*/2)*100 with *f* = 0.5, *f_c* = 0, *k_d* = 3.1x10⁻⁵ s⁻¹. ^c Represents the total weight of VA-086 at the start of each chain extension characterised by the sum of the weight of VA-086 added plus the weight of VA-086 remaining from the previous block. ^d Represents the concentration of the monomer at the beginning of each block extension. ^e Theoretical estimation of the fraction of living chains per block. ^f Theoretical estimation of the cumulated fraction of living chains

Block	Multiblock composition	Monomer conversion ^a (%)	M _{n,th} ^b (g mol⁻¹)	M _{n,SEC} ^c (g mol⁻¹)	1
1	P(AMPS) ₁₀	99	2,500	5,700	1
2	P(AMPS) ₁₀ -b-P(AMPS) ₁₀	99	4,800	8,300	1
3	P(AMPS) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> -P(AMPS) ₁₀ =	> 99	7,100	9,600	1
4	P(AMPS) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> - P(AMPS) ₁₀	> 99	9,300	12,300	1
5	P(AMPS) ₁₀ -b-P(AMPS) ₁₀ -b-P(AMPS) ₁₀ -b- P(AMPS) ₁₀ -b-P(AMPS) ₁₀	> 99	11,600	14,800	1
6	P(AMPS) ₁₀ -b-P(AMPS) ₁₀ -b-P(AMPS) ₁₀ -b- P(AMPS) ₁₀ -b-P(AMPS) ₁₀ -b-P(AMPS) ₁₀	> 99	13,900	17,000	1
7	P(AMPS) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> - P(AMPS) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> - P(AMPS) ₁₀	> 99	16,200	17,700	1
8	P(AMPS) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> - P(AMPS) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> -	> 99	18,400	18,900	1

^a Determined by ¹H NMR in MeOD. ^b Determined using equation 2. ^c Determined using aqueous SEC with a RI detector using PEG as a standard.

Figure SI4: ¹H NMR spectra (MeOD, 300 MHz) displaying the monomer conversion for each new chain extension (up to 8 blocks).

Figure SI5: Comparison of the final SEC chromatograms (aqueous SEC using PEG standard) obtained for the homopolymer $P(AMPS)_{80}$ and the 8th blocks of the octablock ($P(AMPS)_{10}$)₈ synthesized by RAFT polymerization.

Table SI3: Conditions used for the preparation of $(P(AMPS)_{10}-b-P(HEAm)_{10})_4$ via RAFT polymerization in phosphate buffer solution at 90 °C.

Block	1	2	3	4	5	6	7	8
Monomer	AMPS	HEAm	AMPS	HEAm	AMPS	HEAm	AMPS	HEAm
DP _{targeted}	10	10	10	10	10	10	10	10
m _{monomer added} (mg)	580	292	580	292	580	292	580	292
m _{cta} (mg)	64	-	-	-	-	-	-	-
m _{VA-086 added} (mg)	1.22	0.47	0.91	0.43	1.08	0.53	1.25	0.64
M _{NaOH added} (mg)	5.06	-	-	-	-	-	-	-
V _{H2O}	358	-	-	-	-	-	-	-
V _{total} (mL) ^a	1.69	1.99	2.85	3.15	4.01	4.33	5.19	5.51
VA-086 _{consumed} (%) ^b	1.22	1.42	2.06	2.26	2.89	3.11	3.73	3.98
m _{VA-086 total} (mg) ^c	20	20	11	20	11	20	11	20
[AMPS] ₀ (M) ^d	1.50	1.27	0.89	0.80	0.63	0.59	0.49	0.46
[CTA] _t /[VA-086] ₀	60	51	36	32	25	23	20	18
[CTA] _t /[VA-086] _{consumed}	301	255	338	161	240	117	186	92
L (%) ^e	99.7	99.7	99.8	99.7	99.8	99.7	99.8	99.7
Cumulative L (%) ^f	99.7	99.3	99.2	98.8	98.7	98.3	98.2	97.8

^a Represents the sum of the volume of the monomer added + V_{total} from the previous block. ^b Determined using the following equation VA-086_{consumed} = [VA-086]_{consumed}/[VA-086]₀ *100 = 2f(1-exp(-k_dt))(1-f_c/2)*100 with f = 0.5, f_c = 0, k_d = 3.1x10⁻⁵ s⁻¹. ^c Represents the total weight of VA-086 at the start of each chain extension characterised by the sum of the weight of VA-086 added plus the weight of VA-086 remaining from the previous block. ^d Represents the concentration of the monomer at the beginning of each block extension. ^e Theoretical estimation of the fraction of living chains per block. ^f Theoretical estimation of the cumulated fraction of living chains

Table SI4: ¹ H NMR and SEC data analysis for the multiblock copolymer (P(AMPS) ₁₀ - <i>b</i> -P(HEAm) ₁₀) ₄ after chain extension							
Block	Multiblock composition	Monomer conversion ^a	$M_{n,th}^{b}$	<i>M</i> _{n,SEC} ^c	Ðc		
		(%)	(g mol⁻¹)	(g mol⁻¹)			
1	P(AMPS) ₁₀	99	2,600	5,500	1.09		
2	P(AMPS) ₁₀ -b-P(HEAm) ₁₀	99	3,700	4,000	1.25		
3	P(AMPS) ₁₀ - <i>b</i> -P(HEAm) ₁₀ - <i>b</i> -P(AMPS) ₁₀	> 99	6,000	9,100	1.13		
4	P(AMPS) ₁₀ - <i>b</i> -P(HEAm) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> - P(HEAm) ₁₀	> 99	7,100	8,400	1.18		
5	P(AMPS) ₁₀ - <i>b</i> -P(HEAm) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> - P(HEAm) ₁₀ - <i>b</i> -P(AMPS) ₁₀	> 99	9,400	13,100	1.18		
6	P(AMPS) ₁₀ - <i>b</i> -P(HEAm) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> - P(HEAm) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> -P(HEAm) ₁₀	> 99	10,500	11,800	1.25		
7	P(AMPS) ₁₀ - <i>b</i> -P(HEAm) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> - P(HEAm) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> -P(HEAm) ₁₀ - <i>b</i> - P(AMPS) ₁₀	> 99	12,800	17,700	1.30		
8	P(AMPS) ₁₀ - <i>b</i> -P(HEAm) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> - P(HEAm) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> -P(HEAm) ₁₀ - <i>b</i> - P(AMPS) ₁₀ - <i>b</i> -P(HEAm) ₁₀	> 99	13,900	16,700	1.48		

^a Determined by ¹H NMR in MeOD. ^b Determined using equation 2. ^c Determined using aqueous SEC with a RI detector using PEG as a standard.

Figure SI6: ¹H NMR spectra (MeOD, 300 MHz) displaying the monomer conversion for each new chain extension (up to 8 blocks).

Figure SI7: SEC chromatogram (aqueous SEC with PEG standard) of the macro CTA-PAMPS10 (Black) then chain extended with PHEAm₂₀₀.

Table SI5: Conditions used for the preparation of $(P(AMPS)_{10}-b-P(NAM)_{10})_2$ via RAFT polymerization in phosphate buffer solution at 90 °C.

Block	1	2	3	4
Monomer	AMPS	NAM	AMPS	NAM
DP _{targeted}	10	10	10	10
m _{monomer added} (mg)	1160	715	1160	715
m _{cta} (mg)	128	-	-	-
m _{vA-086 added} (mg)	2.43	0.74	1.61	0.97
M _{NaOH added} (mg)	10.13	-	-	-
V _{H2O}	1080	-	-	-
V _{total} (mL) ^a	3.38	4.07	5.79	5.63
VA-086 _{consumed} (%) ^b	1.22	1.45	1.98	2.25
m _{va-086 total} (mg) ^c	20	20	11	20
[AMPS] ₀ (M) ^d	1.50	1.24	0.88	0.90
[CTA] _t /[VA-086] ₀	60	50	35	31
[CTA] _t /[VA-086] _{consumed}	301	325	334	203
L (%) ^e	99.6	99.6	99.8	99.7
Cumulative L (%) ^f	99.6	99.3	99.1	98.8

^a Represents the sum of the volume of the monomer added + V_{total} from the previous block. ^b Determined using the following equation VA-086_{consumed} = [VA-086]_{consumed}/[VA-086]₀ *100 = 2*f*(1-exp(-*k*_dt))(1-*f*_c/2)*100 with *f* = 0.5, *f*_c = 0, *k*_d = 3.1x10⁻⁵ s⁻¹. ^c Represents the total weight of VA-086 at the start of each chain extension characterised by the sum of the weight of VA-086 added plus the weight of VA-086 remaining from the previous block. ^d Represents the concentration of the monomer at the beginning of each block extension. ^e Theoretical estimation of the fraction of living chains per block. ^f Theoretical estimation of the cumulated fraction of living chains.

Table SI6: ¹H NMR and SEC data analysis for the multiblock copolymer $(P(AMPS)_{10} - b - P(NAM)_{10})_2$ after chain extension

Block	Multiblock composition	Monomer conversion ^a (%)	M _{n,th} ^b (g mol⁻¹)	M _{n,SEC} ^c (g mol⁻¹)	Ðc
1	P(AMPS) ₁₀	99	2,500	5,400	1.09
2	P(AMPS) ₁₀ - <i>b</i> -P(NAM) ₁₀	99	4,000	1,800	1.50
3	P(AMPS) ₁₀ - <i>b</i> -P(NAM) ₁₀ - <i>b</i> -P(AMPS) ₁₀	> 99	6,200	9,100	1.10
4	P(AMPS) ₁₀ - <i>b</i> -P(NAM) ₁₀ - <i>b</i> -P(AMPS) ₁₀ - <i>b</i> - P(NAM) ₁₀	> 99	7,600	4,000	1.41

^a Determined by ¹H NMR in MeOD. ^b Determined using equation 2. ^c Determined using aqueous SEC with a RI detector using PEG as a standard.

Figure SI8: ¹H NMR spectra (MeOD, 300 MHz) displaying the monomer conversion for each new chain extension (up to 4 blocks).

Figure SI9: ¹H NMR spectra (MeOD, 300 MHz) showing the monomer conversion for the arm (bottom) after 2 hours and the cross-linker conversion for the star (top) after 2.5 hours.