Energy Dissipation and Mullins Effect of Tough Polymer/Graphene Oxide

Hybrid Nanocomposite Hydrogels

Ziqing Tang^{1, #}, Feng Chen^{1, #}, Qiang Chen^{1*}, Lin Zhu¹, Xiaoqiang Yan¹, Hong Chen², Baiping Ren², Jia Yang¹, Gang Qin¹, and Jie Zheng ^{2*}

¹School of Materials Science and Engineering Henan Polytechnic University, Jiaozuo, China, 454003

² Department of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio, USA, 44325

Equivalent contribution

* Corresponding Author: <u>qiangcheneric@163.com</u> and <u>zhengj@uakron.edu</u>

Figure S1. Swelling of PAAm/GO NC gels with various GO concentrations.

MBA (mol%)	<i>E</i> (kPa)	$\sigma_{\rm f}({ m MPa})$	$\mathcal{E}_{\mathrm{f}}(\mathrm{mm/mm})$	<i>W</i> (MJ/m3)
0.01	49.70	0.01	6.84	0.60
0.03	46.16	0.23	11.94	1.92
0.05	61.94	0.27	12.21	2.32
0.07	65.88	0.27	13.76	2.51
0.1	93.32	0.19	4.28	0.71

Table S1. Effect of MBA concentration on the tensile properties of PAAm/GO NC gels

Table S2. Effect on strain rate on the tensile properties of PAAm/GO NC gels.

Strain rate (s ⁻¹)	E(kPa)	$\sigma_{f}(MPa)$	<i>€_f</i> (mm/mm)	W(MJ/m3)
0.006	72.16	0.18	12.23	1.49
0.036	70.79	0.24	15.87	2.48
0.060	67.56	0.27	17.58	2.99
0.129	65.88	0.27	13.76	2.51
0.244	45.96	0.24	14.79	2.34