Electronic Supplementary Information

for

Polymer Electron Donor based on Isoindigo Unit Bearing Branched

Oligo(Ethylene Glycol) Side Chains for Polymer Solar Cells

Xingxing Chen,^{a,b} Zijian Zhang,^{a,b} Jun Liu*a and Lixiang Wang*a

^aState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. ^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China. Email: liujun@ciac.ac.cn, lixiang@ciac.ac.cn

Fig. S1 TGA curves of the two polymers. The two polymers show good thermal stability with decomposition temperatures (T_d) at 5% weight loss of 402 °C for P-Alkyl, 379 °C for P-OEG.

Fig. S2 Current density-voltage (*J-V*) curves and space-charge-limited current (SCLC) fittings of the hole-only devices of the two polymers.

Fig. S3 Current density-voltage (*J-V*) curves and space-charge-limited current (SCLC) fittings of the hole-only devices and the electron-only devices based on the blend films of P-Alkyl/PC₇₁BM and P-OEG/PC₇₁BM processed from CB solutions with 1 vol% and 3 vol% DIO, respectively.

Fig. S4 Current density-voltage (*J-V*) curves and space-charge-limited current (SCLC) fittings of the hole-only devices and the electron-only devices based on the

blend films of P-Alkyl/PC₇₁BM and P-OEG/PC₇₁BM processed from CB solutions without DIO.

Table S1Summary of hole and electron mobility of the P-Alkyl/PC71BM and P-OEG/PC71BM blend films spin-coated without or with DIO.

A ativa I avar	DIO	$\mu_{ m h}$	$\mu_{ m e}$		
Active Layer	(v/v%)	(cm ² V ⁻¹ s ⁻¹)	(cm ² V ⁻¹ s ⁻¹)	$\mu_{ m h}/\mu_{ m e}$	
P-Alkyl:PC ₇₁ BM	0	1.90×10 ⁻⁴	3.50×10-4	1/2	
	3.0	3.56×10 ⁻⁴	7.00×10 ⁻⁴	1/2	
P-OEG:PC71BM	0	1.49×10 ⁻⁴	1.20×10-3	1/8	
	1.0	3.48×10 ⁻⁴	2.87×10-3	1/8	

The charge mobilities of the two polymers were measured using space-chargelimited current (SCLC) method. The mobility was obtained by fitting the *J-V* curves near quadratic region according to the modified Mott-Gurney equation:

$$J = \frac{9}{8}\varepsilon_r \varepsilon_0 \mu \frac{V^2}{L^3} \exp(0.89\beta \frac{\sqrt{V}}{\sqrt{L}})$$

where *J* is the current density, ε_0 is vacuum permittivity, ε_r is the relative permittivity, μ is the zero-field mobility, *V* is the potential across the device ($V = V_{applied}-V_{bias}-V_{series}$), *L* is the thickness of active layer, and β is the field-activation factor. The series and contact resistance (V_{series}) of the device (10-20 Ω) were measured using blank device of ITO/PEIE/Ca/Al or ITO/PEDOT:PSS/MoO₃/Ag. The hole-only devices structure: ITO/PEDOT:PSS/polymers (polymer:PC₇₁BM)/MoO₃/Ag. The electrononly devices structure: ITO/PEIE/Active layer/Ca/Al

Fig. S5 a) J-V and b) EQE curves of the PSC devices based on P-OEG/PC₇₁BM active layer processed from CB solution with 1 vol% DIO with different thickness.

Table S2Characteristics of the PSC devices based on the P-OEG/PC71BM blendprocessed from CB solutions with 1 vol% DIO with different thickness.

Thickness	V _{OC}	$J_{ m SC}$	FF	PCE	Rs	Rsh
(nm)	(V)	$(mA cm^{-2})$	(%)	(%)	$(\Omega \text{ cm}^{-2})$	$(\Omega \text{ cm}^{-2})$
130	0.73	13.70	46.90	4.69	17	396
102	0.73	13.92	50.20	5.10	14	406
77	0.73	12.10	55.46	4.90	12	616
58	0.73	10.25	58.05	4.35	11	476

Fig. S6 a) *J-V* and b) EQE curves of the PSC devices based on P-OEG/PC₇₁BM active layer processed from CB solution without DIO with different thickness.

Thickness	$V_{\rm OC}$	$J_{ m SC}$	FF	PCE	Rs	Rsh
(nm)	(V)	(mA cm ⁻²)	(%)	(%)	$(\Omega \text{ cm}^{-2})$	$(\Omega \text{ cm}^{-2})$
110	0.76	4.46	42.00	1.43	50	381
85	0.77	5.39	42.20	1.75	39	279
70	0.77	5.95	42.80	1.96	32	259
60	0.77	5.38	43.75	1.81	39	351

Table S3 Characteristics of the PSC devices based on the P-OEG/PC71BM blendprocessed from CB solution without DIO with different thickness.

Fig. S7 a) *J-V* and b) EQE curves of the PSC devices based on P-Alkyl/PC₇₁BM active layer processed from CB solution with 3 vol% DIO with different thickness.

Thickness	V _{OC}	$J_{ m SC}$	FF	PCE	Rs	Rsh
(nm)	(V)	$(mA cm^{-2})$	(%)	(%)	$(\Omega \text{ cm}^{-2})$	$(\Omega \text{ cm}^{-2})$
125	0.86	3.31	53.31	1.52	29	2730
80	0.87	3.96	60.33	2.08	19	1248
76	0.87	4.11	63.40	2.30	23	2357
64	0.86	3.79	63.45	2.07	17	3929

Table S4Characteristics of the PSC devices based on the P-Alkyl/PC71BM blendprocessed from CB solutions with 3 vol% DIO with different thickness.

Fig. S8 a) *J-V* and b) EQE curves of the PSC devices based on P-Alkyl/PC₇₁BM active layer processed from CB solution without DIO with different thickness.

Table S5 Characteristics of the PSC devices based on the P-Alkyl/PC71BM blendprocessed from CB solutions with 3 vol% DIO with different thickness.

Thickness	V _{OC}	$J_{ m SC}$	FF	PCE	Rs	Rsh
(nm)	(V)	$(mA cm^{-2})$	(%)	(%)	$(\Omega \text{ cm}^{-2})$	$(\Omega \text{ cm}^{-2})$
120	0.93	0.71	59.05	0.39	206	4900
88	0.93	1.16	61.74	0.67	114	3743
70	0.93	1.36	62.80	0.79	76	3421
51	0.93	1.09	62.97	0.64	51	2251

Fig. S9 *J-V* curves of the PSC devices in dark based on P-Alkyl/PC₇₁BM and P-OEG/PC₇₁BM active layers spin-coated from CB solutions with and without DIO.

Fig. S10 AFM phase images of the active layers based on the blends of P-Alkyl:PC₇₁BM a) without DIO b) with DIO and P-OEG:PC₇₁BM c) without and d) with DIO.

AFM images indicate that the active layers of P-OEG shows more finely mixed phase separation morphology compared to that of P-Alkyl. These can be attributed to the large surface energy of the polymer with OEG side chains, which lead to good miscibility with $PC_{71}BM$ and consequently give well mixed phase separation morphology. The phase separation morphology also affect the PSC device performance of the polymers.

Surface Energy Measurement. The surface energy of the polymers was characterized and calculated by the contact angles of the two probe liquids (water and glycol) with the Owens and Wendt equation:

$$(1 + \cos \theta)\gamma_{pl} = 2 (\gamma_s^{d}\gamma_{pl}^{d})^{1/2} + 2 (\gamma_s^{p}\gamma_{pl}^{p})^{1/2}$$

where γ_s and γ_{pl} are the surface energy of the sample and the probe liquid, respectively. The superscripts d and p refer to the dispersion and polar components of the surface energy, respectively.

Fig. S11 ¹H NMR spectrum of monomer 3.

Fig. S12 ¹³C NMR spectrum of monomer 3.

Fig. S13 ¹H NMR spectrum of P-OEG.