Supporting Information

Polyetheramine(PEA): a versatile platform to tailor the properties of hydrogel via \mathbf{H}-bonding interaction

Changxu Zhang ${ }^{\dagger}$, Zhiyong Liu ${ }^{\dagger}$, Xinhui Zhang ${ }^{\dagger}$, Zixing Shi ${ }^{* \dagger}$, Hongjie Xu ${ }^{\dagger}$, Xiaodong Ma ${ }^{\dagger}$, Jie Yin \dagger, and Ming Tian ${ }^{*}{ }^{\dagger}$

${ }^{\dagger}$ School of Chemistry \& Chemical Engineering, State Key Laboratory of Metal Matrix Composite Materials and Shanghai Key Lab of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
${ }^{\dagger}$ State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.

Fig. S1 Photographs of different types of hydrogels with same PEA content (10\%) .

Fig. S2 Polymerization state of PEA P-A- 10\%-PAAm hydrogel, PEA -P-D $^{-10 \%-P A A m ~ h y d r o g e l ~}$
and only APS hydrogel after 2 hours at room temperature.

Fig. S3 Three consecutive loading-unloading cycles curves without any lapse time between the cycles of PEA-P-A -10%-PAAm hydrogel.

Fig. S4 The size and color change of PEA-P-A-PAAm hydrogels with different content of PEA_P-A at different times in (a) hydrochloric acid and (b) sodium hydroxide aqueous solution(From left to right, the PEA_P-A content is $0 \%, 1 \%, 3 \%, 5 \%, 10 \%, 20 \%$, respectively.).

Fig. S5 The swelling-curves of PEA ${ }_{\text {P-A }}-20 \%$-PAAm hydrogel in $\mathrm{pH}<1$ and $\mathrm{pH}>13$ solutions.

Table S1. Compositions of PEA-P-A ${ }_{-P A A m}$ hydrogels with different PEA-P-A PAntent.

Sample	AAm/g	PEA/g	APS/g	BIS/g	Water /g
PEA.p-A 1%-PAAm	10	0.1	0.01	0.005	23.6
PEA.p-A 3%-PAAm	10	0.3	0.01	0.005	24.0
PEA.p-A 5%-PAAm	10	0.5	0.01	0.005	24.5
PEA $_{\text {P-A }}-10 \%$-PAAm	10	1.0	0.01	0.005	25.7
PEA.P-A -20%-PAAm	10	2.0	0.01	0.005	28

Table S2. The formulas of the model compounds.

Sample	AAm/g	PEA/g	APS/g	Water/g
PEA $_{-P-P}$ PAAm	0.5	0.5	0.005	10
PEA $_{-P-A}$ PAAm	0.5	0.5	0.005	10
PEA $_{\text {P-D }-P A A m ~}^{P A}$	0.5	0.5	0.005	10

