Supporting information for:

Synthesis of well-defined epoxy-functional spherical nanoparticles by RAFT aqueous emulsion polymerization

Fiona L. Hatton*, Joseph R. Lovett and Steven P. Armes*

Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK

*Authors to whom correspondence should be addressed (f.l.hatton@sheffield.ac.uk and s.p.armes@sheffield.ac.uk)

Figure S1. ¹H NMR spectra recorded at t = 0 h and t = 1 h for the chain extension of PGMA₄₅ with GlyMA via RAFT aqueous emulsion polymerization at 50 °C at pH 7. The target copolymer composition was PGMA₄₅-PGlyMA₁₀₀ with 3-(trimethylsilyl) propionic acid (TMSP) being used as an internal standard. Peak integrals were referenced to the TMSP peak at 0 ppm.

Target polymer	Conversion	M _n	Mw	٥	<i>D_h</i> (nm)	PdI
composition	(%) ^a	(g mol⁻¹) ^ь	(g mol⁻¹) ^b	Ð~		
G ₄₅ macro-CTA	63	12 200	14 200	1.16	-	-
G ₄₅ -Gly ₃₅	99	17 000	19 500	1.15	20	0.01
G ₄₅ -Gly ₄₀	>99	17 000	20 000	1.18	24	0.10
G ₄₅ -Gly ₅₀	>99	18 800	22 300	1.19	26	0.06
G ₄₅ -Gly ₆₀	>99	19 500	23 500	1.21	26	0.03
G ₄₅ -Gly ₈₀	>99	21 600	27 000	1.25	30	0.02
G ₄₅ -Gly ₁₀₀	>99	23 600	29 800	1.26	35	0.05
G ₄₅ -Gly ₁₁₀	>99	25 600	33 500	1.31	43	0.10
G ₄₅ -Gly ₁₂₀	>99	26 900	36 000	1.34	52	0.13
G ₄₅ -Gly ₁₃₀	99	28 600	39 500	1.38	62	0.15
G ₄₅ -Gly ₁₄₀	99	29 700	41 400	1.39	73	0.17
G ₄₅ -Gly ₁₅₀	>99	30 600	44 200	1.44	95	0.18
G ₄₅ -Gly ₁₆₀	>99	31 900	46 200	1.45	85	0.16
G ₄₅ -Gly ₁₇₀	>99	33 100	49 500	1.49	96	0.18
G ₄₅ -Gly ₁₈₀	>99	34 600	52 800	1.53	122	0.20
G ₄₅ -Gly ₁₉₀	>99	35 100	53 400	1.52	131	0.22
G ₄₅ -Gly ₂₀₀	>99	38 300	58 200	1.52	133	0.21
G ₄₅ -Gly ₃₀₀	99	47 600	83 700	1.76	462	0.54
G ₄₅ -Gly ₄₀₀	>99	60 800	112 100	1.85	-	-
G ₄₅ -Gly ₅₀₀	99	72 800	151 500	2.08	-	-

Table S1. Monomer conversions, molecular weight data, DLS diameters and DLS polydispersities obtained for the synthesis of PGMA₄₅-PGlyMA₁₀₀ diblock copolymer nanoparticles via RAFT aqueous emulsion polymerization of GlyMA at 50 °C and pH 7 using a PGMA₄₅ macro-CTA conducted at 10 % w/w solids.

^a Calculated from ¹H NMR spectra recorded in d_{6} -DMSO, after a reaction time of 1 h.

^b Determined by GPC analysis with DMF eluent containing 10 mM LiBr against a series of PMMA calibration standards.

Figure S2. TEM images obtained for $PGMA_{45}$ -PGlyMA_n diblock copolymer nanoparticles prepared by RAFT-mediated aqueous emulsion polymerization of GlyMA at 10 % w/w solids at 50 °C and pH 7, where the mean degree of polymerization for the core-forming PGlyMA block, n is equal to 35, 40, 60, 80, 110, 120, 130, 150, 160, 170, 190 or 200. Black scale bars represent 200 nm in each case.

Figure S3. TEM images obtained for $PGMA_{45}$ -PGlyMA₄₀₀ prepared by RAFT aqueous emulsion polymerization of GlyMA at 50 °C and pH 7 at 10 % w/w solids.

Figure S4. Overlaid GPC chromatograms recorded for $PGMA_{45}$ macro-CTA, $PGMA_{45}$ -PGlyMA₂₅ and the chain-extended $PGMA_{45}$ -PGlyMA₁₀₀ diblock copolymer obtained from a self-blocking experiment, with the latter two copolymer being prepared by RAFT aqueous emulsion polymerization at 50 °C and pH 7 at 10 % w/w solids.

Figure S5. ¹H NMR spectra recorded for dialyzed PGMA₄₅-PGlyMA₁₀₀ nanogels crosslinked using varying amounts of EDA (amine/epoxy molar ratios = 0.10, 0.25, 0.50 or 1.0) at a copolymerconcentration of 10 w/w% solids. The aqueous nanogel dispersions were diluted with d_{6} -DMSO in order to assess whether the crosslinked cores gave visible ¹H NMR signals.

Figure S6. ¹H NMR spectra obtained for dialyzed PGMA₄₅-PGlyMA₁₀₀ nanogels crosslinked with varying amounts of PEG₃₁DA (amine/epoxy molar ratios = 0.10, 0.25, 0.50 or 1.0) at a copolymer concentration of 10 w/w% solids. These aqueous nanogel dispersions were diluted with d_{6} -DMSO in order to assess whether the crosslinked cores gave visible ¹H NMR signals.

Figure S7. Overlaid FTIR spectra recorded for the linear PGMA₄₅-PGlyMA₁₀₀ precursor nanoparticles and EDA-crosslinked PGMA₄₅-PGlyMA₁₀₀ nanogels prepared using an amine/epoxy molar ratio of 0.10, 0.25, 0.50 or 1.00.

Figure S8. Overlaid FTIR spectra recorded for the linear $PGMA_{45}$ -PGlyMA₁₀₀ precursor nanoparticles and $PEG_{31}DA$ -crosslinked $PGMA_{45}$ -PGlyMA₁₀₀ nanogels prepared using an amine/epoxy molar ratio of 0.10, 0.25, 0.50 or 1.00.