Supplementary Information

(Co)Polymers Containing Boron Difluoride 3-Cyanoformazanate Complexes: Emission Enhancement via Random Copolymerization

Samantha Novoa and Joe B. Gilroy*

Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond St. N., London, Ontario, Canada, N6A 5B7. Tel: +1-519-661-2111 ext. 81561; E-mail: joe.gilroy@uwo.ca

Fig. S1 Wavelength-dependent emission correction provided by Photon Technology International.

Fig. S2 ¹H NMR spectrum of monomer **BF2N** in CDCl₃.

Fig. S3 ${}^{13}C{}^{1}H$ NMR spectrum of monomer **BF2N** in CDCl₃.

Fig. S4 ¹H NMR spectrum of **PDND** in CDCl₃.

Fig. S6 ¹⁹F NMR (left) spectrum and ¹¹B NMR (right) of **PBF2N** in CDCl₃.

Fig. S7 ¹H NMR spectrum of $(PDND)_m$ -*r*- $(PBF2N)_n$ ($f_{BF2N} = 0.50$) in CDCl₃.

Fig. S8 ¹H NMR spectrum of (**PDND**)_m-*r*-(**PBF2N**)_n ($f_{BF2N} = 0.15$) in CDCl₃.

Fig. S9 ¹H NMR spectrum of $(PDND)_m$ -*r*- $(PBF2N)_n$ ($f_{BF2N} = 0.08$) in CDCl₃.

Fig. S10 Representative ¹¹B NMR and ¹⁹F NMR for random copolymers $(PDND)_m$ -*r*- $(PBF2N)_n$ and block copolymers $(PDND)_m$ -*b*- $(PBF2N)_n$ in CDCl₃.

Fig. S11 Relationship between number average molecular weight (M_n) of homopolymers **PBF2N** (a,b) and **PDND** (c,d) and reaction time.

Fig. S12 ¹H NMR spectrum of (**PDND**)_m-*b***-(PBF2N**)_n ($f_{BF2N} = 0.48$) in CDCl₃.

Fig. S13 ¹H NMR spectrum of (**PDND**)_m-*b*-(**PBF2N**)_n ($f_{BF2N} = 0.13$) in CDCl₃.

Fig. S14 ¹H NMR spectrum of (**PDND**)_m-*b*-(**PBF2N**)_n ($f_{BF2N} = 0.07$) in CDCl₃.

Fig. S15 GPC traces recorded for random copolymers $(PDND)_m$ -r- $(PBF2N)_n$ (a), and block copolymers $(PDND)_m$ -b- $(PBF2N)_n$ (b) in DMF.

Fig. S16 TGA data recorded for hompolymers **PBF2N** and **PDND**, random copolymers $(PDND)_m$ -*r*- $(PBF2N)_n$ (a), and block copolymers $(PDND)_m$ -*b*- $(PBF2N)_n$ (b) under a N₂ atmosphere.

Fig. S17 UV-vis absorption spectra of monomer BF_2N , homopolymer PBF2N, and block copolymers $(PDND)_m$ -b- $(PBF2N)_n$ recorded for 0.05 mg mL⁻¹ CH₂Cl₂ solutions.

Fig. S18 Cyclic voltammograms of 1 mM (calculated using an average molar mass for blocks and random copolymers) CH_2Cl_2 solutions of monomer **BF₂N**, homopolymer **PBF2N**, random copolymer (**PDND**)_m-*r*-(**PBF2N**)_n ($f_{BF2N} = 0.50$), and block copolymer (**PDND**)_m-*b*-(**PBF2N**)_n ($f_{BF2N} = 0.48$) containing 0.1 M [nBu_4N][PF₆] as supporting electrolyte recorded at a scan rate of 250 mV s⁻¹. Voltammograms were referenced internally against the ferrocence/ferrocenium redox couple.