Supporting information for

Versatile multicompartment nanoparticles constructed with two thermo-responsive, pH-responsive and hydrolytic diblock copolymers

Shengli Chen[†], Xueying Chang[†], Pingchuan Sun[†] and Wangqing Zhang^{*,†,‡}

[†]Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China. [‡]Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

1. Experimental Section

1.1 Synthesis of macro-RAFT agents

The macro-RAFT agent of PNASME₁₅₃-TTC was prepared by RAFT polymerization under [NASME]₀:[DDMAT]₀:[AIBN]₀ = 800:4:1 in 1,4-dioxane at 70 °C for 12 h. Into a Schlenk flask with a magnetic bar, NASME (1.57 g, 10.00 mmol), DDMAT (18.23 mg, 0.050 mmol), 1,3,5-trioxane (internal standard, 90.00 mg, 1.00 mmol), and AIBN (2.05 mg, 0.0125 mmol) dissolved in 1,4-diethylene dioxide (3.18 g, 3.06 mL) were added. The oxygen in flask content was excluded with high-purity argon at 0 °C, and then the polymerization was initiated at 70 °C under magnetically stirring. After 12 h, the polymerization was inhibited by rapid cooling upon immersion of the flask in iced water (-20 °C) and a monomer conversion of 76.5% was obtained. The monomer conversion was determined with ¹H NMR analysis by comparing the integral areas of the monomer protons of C=C-*H* at δ = 5.60-5.80 ppm with that of the 1,3,5-trioxane internal standard at δ = 5.10-5.20 ppm. The synthesized polymer was purified by three precipitation-filtration cycles in cold diethyl ether, and was dried under vacuum at room temperature overnight to afford a pale yellow powder of PNASME₁₅₃-TTC ($M_{n,th} = 24.3$ kg/mol, $M_{n,GPC} = 23.7$ kg/mol, D = 1.22).

A similar procedure of RAFT polymerization was also employed to prepare the macro-RAFT agent of P4VP₁₃₃-TTC under $[4VP]_0:[DDMAT]_0:[AIBN]_0 = 800:4:1$ in ethanol at 70 °C. After 12h, a monomer conversion of 66.5% was determined by ¹H NMR analysis. The synthesized polymer was purified by three precipitation-filtration cycles in cold diethyl ether, and then dried under vacuum at 25 °C overnight to afford a light pink powder of P4VP₁₃₃-TTC ($M_{n,th} = 14.3 \text{ kg/mol}$, $M_{n,GPC} = 13.2 \text{ kg/mol}$, D = 1.17).

1.2 Synthesis of nanoassemblies formed by individual block copolymers

The PNASME₁₅₃-*b*-PS or P4VP₁₃₃-*b*-PS nano-assemblies were prepared by dispersion RAFT polymerization employing PNASME₁₅₃-TTC or P4VP₁₃₃-TTC as macro-RAFT agent under [St]₀:[macro-RAFT]₀:[AIBN]₀ = 900:3:1 similarly with the dispersion RAFT polymerization employing two macro-RAFT agents introduced in Section 2.3. The obtained diblock copolymers are PNASME₁₅₃-*b*-PS₂₇₉ (T₁₅₃S₂₇₉, $M_{n,th}$ = 53.4 kg/mol, $M_{n,GPC}$ = 50.2 kg/mol, D = 1.29) and P4VP₁₃₃-*b*-PS₂₉₂ (H₁₃₃S₂₉₂, $M_{n,th}$ = 44.6 kg/mol, $M_{n,GPC}$ = 42.3 kg/mol, D = 1.21).

2. Equations and Tables

$$M_{\rm n,th} = \frac{[\rm monomer]_0 \times M_{\rm monomer}}{[\rm RAFT]_0} \times \rm Conversion + M_{\rm n, RAFT/macro-RAFT} (S1)$$

where [monomer]₀ and [RAFT]₀ represent the concentration of the fed monomer and the RAFT agent, M_{monomer} is the molar mass of the monomer, $M_{n,\text{RAFT/macro-RAFT}}$ is the molar mass of RAFT/macro-RAFT agent, and the monomer Conversion is determined by ¹H NMR analysis by comparing the integral areas of the monomer protons of C=C-*H* at δ = 5.60-5.80 ppm with those of the 1,3,5-trioxane internal standard at δ = 5.10-5.20 ppm.

The $M_{n,NMR}$ of separated diblock copolymers, *i.e.*, PNASME-*b*-PS (eq. S2) and P4VP-*b*-PS (eq. S2) was calculated with the ratio of two blocks by ¹H NMR analysis (2.6-3.2 ppm corresponding to methyl of the PNASME block and 6.2-7.3 ppm corresponding to phenyl group of the PS block, and 8.0-8.4 ppm corresponding to pyridyl of the P4VP block).

$$M_{\rm n, NMR} = DP_{\rm PS} \times M_{\rm St} + M_{\rm PNASME-TTC} = \frac{I_{2.6-3.2} \times \frac{1}{3}}{I_{8.0-8.4} \times \frac{1}{6}} \times DP_{\rm PNASME-TTC} \times M_{\rm St} + M_{\rm PNASME-TTC}$$
(82)

$$M_{\rm n, NMR} = DP_{\rm PS} \times M_{\rm St} + M_{\rm P4VP-TTC} = \frac{I_{6.2-7.3} \times \frac{1}{2}}{I_{8.0-8.4} \times \frac{1}{6}} \times DP_{\rm P4VP-TTC} \times M_{\rm St} + M_{\rm P4VP-TTC}$$
(S3)

Figures	MCBNs ^a	[St] ₀ :[T] ₀ :	Conv. ^b	$M_{n,\rm NMR}(\rm kg/mol)^c$		$M_{\rm n,GPC}$ (kg/mol)/ $D^{\rm d}$		
		[H] ₀ :[I] ₀	(%)	TS ^e	HS ^f	TS/HS	TS ^e	HS ^f
4B/5B	$T_{153}S_{260}\!/H_{133}S_{260}$	1800:3:3:1	86.7	50.6	43.9	43.1/1.37	45.2/1.25	40.7/1.21
4A	$T_{153}S_{261}/H_{133}S_{261}$	1800:4:2:1	87.2	51.4	43.4	43.7/1.40	45.5/1.22	39.8/1.19
4C	$T_{153}S_{264}\!/\!H_{133}S_{264}$	1800:2:4:1	88.3	50.3	44.5	44.2/1.42	46.6/1.24	41.7/1.28
5A	$T_{153}S_{90}\!/H_{133}S_{90}$	600:3:3:1	90.1	33.6	23.8	27.4/1.36	30.9/1.18	21.2/1.15
5C	$T_{153}S_{390}\!/H_{133}S_{390}$	3000:3:3:1	78.2	64.6	57.1	52.3/1.44	58.1/1.31	49.8/1.27
9A-B	$T'_{153}S_{260}\!/H_{133}S_{260}$	1800:3:3:1	86.7	48.5	43.9	42.7/1.41	44.1/1.20	39.8/1.17

Table S1. Summary of the synthesized MCBNs.

^a T, H, S and T' denotes PNASME, P4VP, PS and PNAS block, respectively, ^b the monomer conversion was determined by ¹H NMR analysis, ^c the molecular weight by NMR analysis according to eqs. S2 and S3, ^d the polymer molecular weight and D (M_w/M_n) by GPC analysis, ^e TS denotes the separated PNASME-*b*-PS diblock copolymer or the hydrolytic PNAS-*b*-PS diblock copolymer, ^f HS denotes the separated P4VP-*b*-PS diblock copolymer. Note: the MCBNs of T'₁₅₃S₂₆₀/H₁₃₃S₂₆₀ was prepared with hydrolyzing from T₁₅₃S₂₆₀/H₁₃₃S₂₆₀.

3. Supplementary Figures

Figure S1. TEM images of the non-stained nanoparticles of $PNASME_{153}$ -b- PS_{279} ($T_{153}S_{279}$, A), P4VP₁₃₃-b-PS₂₉₂ ($H_{133}S_{292}$, B) dispersed in ethanol/water (80/20 w/w) prepared via dispersion RAFT polymerization employing individual macro-RAFT agents and the PNASME₁₅₃-b-PS₂₆₀/P4VP₁₃₃-b-PS₂₆₀ nanoparticles ($T_{153}S_{260}/H_{133}S_{260}$, C) prepared employing two macro-RAFT agents.

Figure S2. Temperature-dependent transmittance of 0.01 wt% PNASME₁₅₃-TTC aqueous solution.

Figure S3. DSC thermograms of the PNASME₁₅₃/P4VP₁₃₃ (1/1 w/w) blends (A), and PNAS₁₅₃-*b*-PS₂₆₀/P4VP₁₃₃-*b*-PS₂₆₀ (B) obtained from hydrolysis of PNASME₁₅₃-*b*-PS₂₆₀/P4VP₁₃₃-*b*-PS₂₆₀, the separated diblock copolymer of P4VP₁₃₃-*b*-PS₂₆₀ (C) and PNAS₁₅₃-*b*-PS₂₆₀ (D). Note: The glass transition temperature (T_g) of PNASME₁₅₃ is about 102.1 °C and the T_g of P4VP₁₃₃ is about 141.4 °C.

Figure S4. ¹H NMR spectra of the PNASME₁₅₃-*b*-PS₂₆₀/P4VP₁₃₃-*b*-PS₂₆₀ nanoparticles before hydrolysis (A) and the PNAS₁₅₃-*b*-PS₂₆₀/P4VP₁₃₃-*b*-PS₂₆₀ nanoparticles after hydrolysis (B). Note: the signal of H₂O (3.33 ppm) in DMSO- d_6 was inhibited by water suppression experiment.

Figure S5. pH dependence of Zeta-potentials of the $PNAS_{153}$ - $PS_{260}/P4VP_{133}$ - PS_{260} nanoparticles in aqueous solution at pH = 12.0, pH = 2.0 and pH = 6.5, respectively. Insets: the schematic structures of nanoparticles in aqueous solution are at pH = 2.0 and pH = 6.5, respectively.