Supplementary Information

Preorganized dual H-bond donor promotes benzoic acid active

in polymerization of δ -valerolactone

Herui Sun, Songquan Xu, Zhenjiang Li, Jiaxi Xu, Jingjing Liu, Xin Wang, Haixin Wang, He Dong, Yaya Liu and Kai Guo*

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd South, Nanjing 211816, China

Contents

¹ H NMR and ¹³ C NMR of the 3-amino-1,2,4-benzothiadiazine-1,1-dioxide (ABTD)S2,S
The first-order kinetics plots for poly- δ -valerolactone (PVL) catalyzed by the ABTI
with different carboxylic acidS4,S
Chemical shifts of carbonyl carbon the VL in the ¹³ C NMR spectraS6,S
¹³ C NMR of the PVLSi

¹H NMR and ¹³C NMR of the 3-amino-1,2,4-benzothiadiazine-1,1-dioxide (ABTD)

Figure S1. ¹H NMR spectrum of the 3-amino-1,2,4-benzothiadiazine-1,1-dioxide (ABTD) (400 MHz, DMSO).

Figure S2. ¹³C NMR spectrum of the 3-amino-1,2,4-benzothiadiazine-1,1-dioxide (ABTD) (400 MHz, DMSO).

The first-order kinetics plots for poly- δ -valerolactones (PVL) catalyzed by the ABTD with different carboxylic acid

Fig S3. The first-order kinetics plots for poly- δ -valerolactones (PVL) catalyzed by ABTD/benzoic acid(BA)([δ -VL]₀/[ABTD]₀/[carboxulic acid]₀/[BnOH]₀ =30:1:1:1, CH₂Cl₂, room temperature) (red line), and by BA ([VL]₀/[carboxulic acid]₀/ [BnOH]₀ = 30:1:1, CH₂Cl₂, room temperature) (black line).

Fig S4. The first-order kinetics plots for PVL catalyzed by ABTD/ p-Toluic acid(CH₃-BA)($[\delta$ -VL]₀/[ABTD]₀/[carboxulic acid]₀/[BnOH]₀ = 30:1:1:1, CH₂Cl₂, room temperature) (red line), and by CH3-BA ([VL]₀/[carboxulic acid]₀/ [BnOH]₀ = 30:1:1, CH₂Cl₂, room temperature) (black line).

Fig S5. The first-order kinetics plots for PVL catalyzed by ABTD/4-fluorobenzoic acid (F-BA) ([VL]₀/[ABTD]₀/[carboxulic acid]₀/[BnOH]₀ = 30:1:1:1, CH₂Cl₂, room temperature) (red line), and by F-BA ([VL]₀/[carboxulic acid]₀/ [BnOH]₀ = 30:1:1, CH₂Cl₂, room temperature) (black line).

Chemical shifts of carbonyl carbon of the VL in the ¹³C NMR spectra

Fig S6. Chemical shifts of carbonyl carbon of the VL in the ¹³C NMR spectra observed by the titration of BA in DMSO.

Fig S7. Chemical shifts of carbonyl carbon of the VL in the 13 C NMR spectra observed by the titration of CH₃-BA in DMSO.

Fig S8. Chemical shifts of carbonyl carbon of the VL in the 13 C NMR spectra observed by the titration of F-BA in DMSO.

¹H NMR of the PVL

Figure S9. ¹H NMR spectrum of the obtained PVL prepared at room temperature (400 MHz, $CDCl_3$).