Supplementary Data

Polyurethane-Chitosan Brush as Injectable Hydrogel for Controlled Drug

Delivery and Tissue Engineering

Arun Kumar Mahanta, Sudipta Senapati and Pralay Maiti*

Figure S1: Complete FTIR spectra of chitosan and its indicated copolymers in the range of 3800-700 cm⁻¹.

Figure S2: XRD patterns of pure CHT, Pure PU and the indicated graft copolymers.

Figure S3: Pore size distribution of lyophilized hydrogel scaffold of pure chitosan and its indicated copolymers.

Figure S4: Deswelling profile of swollen dried hydrogel film of pure CHT and its indicated copolymers.

Figure S5: (a) and (b) represent the modulus and toughness of the lyophilized hydrogel scaffold of Pure CHT and its indicated copolymers.

Table S6: Release rate constant (k), correlation coefficient (r_2) and diffusion release exponent (n) obtained using different mathematical model from the drug release kinetics using hydrogel (a) and scaffold (b) of pure chitosan and its indicated copolymers.

Figure S7: FTIR spectra of pure drug, pure chitosan and graft copolymers along with their corresponding drug embedded sample. Asterisks mark indicates the peak position.

Figure S8: (a) DSC thermogram of chitosan and graft copolymers along with their corresponding drug loaded sample. (b) DSC thermogram of pure antibiotic drug, tetracycline hydrochloride.

Figure S1: Complete FTIR spectra of chitosan and its indicated copolymers in the range of 3800-700 cm⁻¹.

Figure S2: XRD patterns of pure CHT, Pure PU and the indicated graft copolymers.

Figure S3: Pore size distribution of lyophilized hydrogel scaffold of pure chitosan and its indicated copolymers.

Figure S4: Deswelling profile of swollen dried hydrogel film of pure CHT and its indicated copolymers.

Figure S5: (a) and (b) represent the modulus and toughness of the lyophilized hydrogel scaffold of Pure CHT and its indicated copolymers.

Sample	Zero Order		First Order		Higuchi		Korsmeyer-Peppas	
	K	r ²	K	r ²	K	r ²	n	r ²
СНТ	4.26 ± 0.76	0.88	0.051 ± 0.012	0.79	16.04 ±2.39	0.91	0.40 ± 0.002	0.98
CHT10	2.59 ± 0.66	0.78	0.043 ± 0.013	0.70	9.82 ± 2.20	0.71	0.35 ± 0.008	0.99
CHT15	1.60 ± 0.24	0.91	0.036 ± 0.007	0.84	6.11 ± 0.40	0.70	0.28 ± 0.009	0.99

(b)

Sample	Zero Order		First Order		Higuchi		Korsmeyer-Peppas	
	K	r ²	K	r ²	K	<i>r</i> ²	n	r ²
СНТ	8.74 ± 0.89	0.95	0.064 ± 0.009	0.91	28.78 ±1.05	0.87	0.38 ± 0.006	0.99
CHT10	6.19 ± 0.64	0.95	0.054 ± 0.008	0.91	20.39 ± 0.8	0.91	0.32 ± 0.006	0.99
CHT15	4.23 ± 0.51	0.94	0.049 ± 0.007	0.90	13.98 ±0.82	0.74	0.29 ± 0.008	0.99

Table S6: Release rate constant (k), correlation coefficient (r_2) and diffusion release exponent (n) obtained using different mathematical model from the drug release kinetics using hydrogel (a) and scaffold (b) of pure chitosan and its indicated copolymers.

Figure S8: (a) DSC thermogram of chitosan and graft copolymers along with their corresponding drug loaded sample. (b) DSC thermogram of pure antibiotic drug, tetracycline hydrochloride.