Supporting information

Synthesis of Microporous Organic Polymers via Radical

Polymerization of Fumaronitrile with Divinylbenzene

Feifei Xie, Wei Hu, Lei Ding, Ke Tian, Zhengchen Wu and Lei Li* College of Materials, Xiamen University, Xiamen, 361005, P. R. China E-mail: lilei@xmu.edu.cn Tel: +86-0592-2186296 Fax: +86-0592-2183937.

Samples	DVB (g)	FN (g)	AIBN (g)	Toluene (mL)
HCPN-0.25	0.2600	0.0390	0.0030	10.0
HCPN-0.5	0.2600	0.0780	0.0034	10.0
HCPN-0.75	0.2600	0.1170	0.0038	10.0
HCPN-1	0.2600	0.1560	0.0040	10.0
HCPN-1.25	0.2600	0.1950	0.0045	10.0
HCPN-1.5	0.2600	0.2340	0.0049	10.0
HCPN-1.75	0.2600	0.2730	0.0053	10.0
HCPN-2	0.2600	0.3120	0.0057	10.0
HCPN-2.5	0.2600	0.3900	0.0065	10.0

Table S1. Formulas of preparation of HCPNs.^a

^a The amount of AIBN is fixed at 1 wt% of monomer mass in all experiments.

Samples	S _{BET} ^a (m ² g ⁻¹)	S _{micro} ^b (m ² g ⁻¹)	MPV ^c (cm ³ g ⁻¹)	PV ^d (cm ³ g ⁻¹)
HCPN-0.25	589	225	0.23	0.59
HCPN-0.5	702	305	0.28	0.57
HCPN-0.75	805	278	0.32	0.82
HCPN-1	719	289	0.29	0.54
HCPN-1.25	667	293	0.27	0.49
HCPN-1.5	582	312	0.24	0.41
HCPN-1.75	538	275	0.22	0.38
HCPN-2	468	286	0.20	0.33
HCPN-2.5	443	245	0.18	0.30

Table S2. Surface areas and pore properties of HCPNs.

^a Surface area calculated from the nitrogen adsorption isotherms at 77.3 K using the BET equation. ^b Micropore surface area calculated from the nitrogen adsorption isotherms at 77.3 K using the t-plot equation. ^c Micropore volume calculated from the nitrogen isotherm at $P/P_0 = 0.15$, 77.3 K using the t-plot equation. ^d Pore volume calculated from the nitrogen isotherm at $P/P_0 = 0.99$, 77.3 K.

Fig. S1 FTIR spectra of HCPNs.

Fig. S2 Solid state ¹³C cross-polarization magic-angle spinning (CP/MAS) NMR spectra of HCPNs. Asterisks denote spinning sidebands.

Fig. S3 SEM image of HCPN-0.75.

Fig. S4 Pore size distributions calculated using NLDFT method (slit pore models, differential pore volume vs. pore width).

Fig. S5 Nitrogen adsorption-desorption isotherms for HCPN-1 before and after being immersed and stirred in 1 M NaOH (red) and 1 M HCl (black) for 24 h, respectively.

Fig. S6 Themogravimetric analysis of HCPN-0.75 under N_2 flow.

Fig. S7 SEM image of CHCPN-1.

Fig. S8 Thermogravimetric analysis of HCPN-1 and CHCPN-1 under N_2 flow (to exclude the influence of moisture adsorpted in the microspores on the TG measurement, the onset temperature is 100 °C).

Fig. S9 CO₂ adsorption and desorption isotherms under 1bar at 273 and 298 K for HCPN-1 and CHCPN-1.

Fig S10 Galvanostatic charge-discharge curves at a density of $1A g^{-1}$ in $1M H_2SO_4$ electrode for CHCPNs.