Supporting Information

Control of Electrostatic Interaction between Molecular Beacon Aptamer and Conjugated Polyelectrolyte for Detection Range-Tunable ATP Assay

Ji-Eun Jeong and Han Young Woo*

Department of Chemistry, Korea University, Seoul 02841, Republic of Korea

Scheme S1. Synthetic routes to CPEs. Reagents and conditions: (i) $Pd(PPh_3)_4$, aliquat, toluene, 2M K_2CO_3 , reflux; (ii) trimethylamine in tetrahydrofuran/methanol, room temperature, 48 h.

Polymers	M _n (g∕mol)ª	M _w (g/mol)⁵	PDI
NP2	21,400	42,100	1.97
NP4	15,300	38,300	2.50
NP6	19,100	34,400	1.80

 Table S1. Molecular weights of neutral precursor polymers.

^aNumber-average molecular weight. ^bWeight-average molecular weight.

Table S2. Summary of	optical properties of	f CPEs in Tris-HCl buffer.
----------------------	-----------------------	----------------------------

MDc) (pm)a) (pm)b	${\cal D}_{PL}{}^{c}$	$\boldsymbol{\varepsilon}_{max}^{d}$
IVIE S	N _{abs} (IIIII)"	Λ _Ρ ι (ΠΠΙ) ²	(%)	(M ⁻¹ cm ⁻¹)
MP2	379	420	35	4.5×10^{4}
MP4	378	421	40	5.4×10^{4}
MP6	374	418	70	5.6×10^{4}

^aMaximum absorption wavelength. ^bMaximum PL wavelength. ^cPL quantum efficiency. ^dMolar absorption coefficient at λ_{abs} .

S3

Fig S1. Absorption (solid) and PL (dashed) spectra of MPs and 6-FAM in 20 mM of Tris-HCl buffer (pH 7.4). [MPs] = 3μ M.

Fig S2. PL Quantum efficiency of MPs depending on [NaCl] in 20 mM of Tris-HCl buffer (pH 7.4). [NaCl] = 0~100 mM. [MPs] = 2.5μ M. Excitation at 380 nm.

Table S3. Equilibrium constants for conformational transformation of MBAs

	MBA sequence (5' - 3')ª	ΔG ⁰	Equilibrium constant (K _{open-hairpin})			
MBA1	GCGC GCGG GGAG TATT GCGG AGGA GCGC GC	-5.8 kcal/mol	1.2×10^{4}			
MBA2	GCGC GCGC GGGG AGTA TTGC GGAG GAGC GCGC	-9.7 kcal/mol	6.4×10^{6}			
MBA3	GCGC GCGC GC <mark>GG GGAG TATT GCGG AGGA</mark> GCGC GCGC GC	-13.5 kcal/mol	3.5 × 10 ⁹			
All MPA word labeled with [6 EAN] at E' and [DAPCYL] at 2' termini						

aAll MBA were labeled with [6-FAM] at 5' and [DABCYL] at 3' termini

* Calculation of Gibbs free energy

http://mfold.rna.albany.edu

The equilibrium constants for conformational change of MBAs were obtained at the above website where the standard Gibbs free energy change, ΔG° , was calculated for folding of nucleic acids with particular base sequence.

(37 °C, $[Na^+]$ = 100 mM and $[Mg^{2+}]$ = 0 M)

* Equilibrium Constant (K)

 $\Delta G = \Delta G^{\circ} + RTInK$

In equilibrium state, $\Delta G = 0$

∴∆G° = -RTInK

 $lnK = \Delta G^{\circ}/-RT$

 $K = e^{(\Delta G^{\circ} / -RT)}$

Where R is gas constant (1.9863 cal/k·mol), T is temperature (310.15 K) and G is Gibbs free energy.

Fig S3. Comparison of fluorescence enhancement of (a) MBA1 and (b) MBA3 with increasing [MPs] = $0 \sim 0.9 \mu$ M. [MBA1] = [MBA3] = 20 nM. Excitation at 490 nm.