Supporting Information:

Table of Contents

1.General methods	S2
2.NMR and ESI-MS of ligand L1-L5 and catalyst Pd1~Pd4, Ni1~Ni4.	.S9
3.NMR figures of (co)polymers.	S30
4.DSC and GPC traces of (co)polymers.	S38
5.X-ray crystallography data	.S53

1. General methods.

All experiments were carried out under dry Nitrogen atmosphere using standard Schlenk techniques or in a glove-box. Deuterated solvents used for NMR were dried and distilled prior to use. ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra were recorded a Bruker AscendTm 400 spectrometer at ambient temperature unless otherwise stated. The chemical shifts of the ¹H and ¹³C NMR spectra were referenced to tetramethylsilane; the ³¹P NMR spectra were referenced to an external 85% H₃PO₄ solution. Coupling constants are in Hz. Elemental analysis was performed by the Analytical Center of the University of Science and Technology of China. X-ray Diffraction data were collected at 298 (2) K on a Bruker Smart CCD area detector with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Molecular weight and molecular weight distribution of the polymer were determined by gel permeation chromatography (GPC) with a PL 210 equipped with one Shodex AT-803S and two Shodex AT-806MS columns at 140 °C using trichlorobenzene as a solvent, and the calibration was made using polystyrene standard and are corrected for linear polyethylene by universal calibration using the Mark–Houwink parameters of Rudin: $K = 1.75 \times 10^{-2} \text{ cm}^3/\text{g}$ and R = 0.67for polystyrene and K = 5.90×10^{-2} cm³/g and R = 0.69 for polyethylene. Dichloromethane, THF, and hexanes were purified by solvent purification systems. 2-(2-bromophenyl)furan,¹ 2-(2-bromophenyl)thiophene,¹ 2-(2-bromophenyl)-1benzofuran,² 2-(2-bromophenyl)-1-benzothiophene,³ and 2-(2- bromophenyl)-1methyl-1H-pyrrole,⁴ were prepared according to literature procedures.

Preparation of Ligand L1: At 0 °C, "BuLi (2.5 M, 8 mL, 20 mmol) was added slowly to a solution of benzenesulfonic acid (1.58 g, 10 mmol) in THF (50 mL). The suspension was stirred for 1 h and added to a solution of dichlorophenyl-phosphine (1.35 mL, 10.0 mmol) in THF (30 mL) at -78 °C. The mixture was stirred for another 12 h at room temperature vield а solution of lithium to [chloro(phenyl)phosphino]benzenesulfonate. In a separate Schlenk flask, 2-(2bromophenyl)furan (2.2 g, 10 mmol) was dissolved in dry THF (100 mL) under nitrogen and cooled to -78 °C. "BuLi (2.5 M in hexane, 4 mL, 10 mmol) was added dropwise. The resulting red solution was stirred for 1.0 h at -78 °C before the lithium [chloro(phenyl)phosphino]benzenesulfonate was added dropwise. The mixture was stirred for another 24 h at room temperature. The volatiles were removed, and the residue was taken up in distilled water (150 mL). The mixture was acidified to pH \sim 2 with concentrated HCl/H₂O solution, and extracted three times with CH₂Cl₂ (total volume 250 mL). The extracts were combined, dried over MgSO₄, and concentrated under vacuum. The crude product was recrystallized from dichloromethane/ether at room temperature. The resulting white crystals were filtered and dried to give the

desired ligand L1(2.7 g, 65%). ¹H NMR (400 MHz, CDCl₃): δ 8.40 (br, 1H), 7.89 – 7.63 (m, 4H), 7.62-7.43 (m, 5H), 7.42 – 7.32 (m, 2H), 7.20 – 7.07 (m, 2H), 6.73 (s, 1H), 6.32 (s, 1H). ¹³C NMR (100 MHz, DMSO): δ 151.1 (d, *J* = 4 Hz), 149.2 (d, *J* = 7 Hz), 143.2 (s), 134.9 (d, *J* = 12 Hz), 133.9 (d, *J* = 6 Hz), 133.8 (s), 132.6 (s), 132.4 (d, *J* = 6 Hz), 132.2 (d, *J* = 9 Hz), 131.5 (s), 130.4 (s), 129.5 (d, *J* = 13 Hz), 129.2 (d, *J* = 9 Hz), 128.6 (s), 128.4 (d, *J* = 12 Hz), 127.5 (s), 127.2 (d, *J* = 13 Hz), 126.9 (s), 125.8(s). ³¹P NMR (162 MHz, DMSO): δ -13.22. ESI-MS (m/z): [M-H]⁻ Calcd for C₂₂H₁₆O₄PS, 407.0507; Found: 407.0502.

Preparation of Ligand L2. Similar procedure as above was employed except 2-(2-bromophenyl)-1-benzofuran was used. **L2** was obtained as a light white solid (3.3 g, 72%). ¹H NMR (400 MHz, CDCl₃): δ 8.43 (br, 1H), 7.97 (br, 1H), 7.78 (d, J = 5.9 Hz, 2H), 7.57 – 7.48 (m, 8H), 7.37-7.35 (d, J = 7.6 Hz 2H), 7.20-7.19 (d, J = 7.3 Hz, 2H), 7.10 (s, 2H). ¹³C NMR (100 MHz, DMSO) of **L2**: δ 153.9 (s), 151.8 (s), 151.6 (s), 138.3 (d, J = 13 Hz), 137.2 (s), 137.0 (s), 135.0 (d, J = 11 Hz), 134.3 (s), 134.1 (s), 133.8 (s), 133.6 (s), 133.4 (s), 133.2 (s), 129.6 (s), 129.2 (d, J = 6 Hz), 128.8 (s), 128.6 (s), 128.4 (s), 128.3 (s),127.7 (s), 124.8 (s), 123.1 (s), 121.6 (s), 111.2 (s), 108.1 (d, J = 18 Hz). ³¹P NMR (162 MHz, DMSO): δ -13.82. ESI-MS (m/z): [M-H]⁻ Calcd for C₂₆H₁₈O₄ PS , 457.0663; Found: 457.0656.

Preparation of Ligand L3. Similar procedure as above was employed except 2-(2-bromophenyl)-1-methyl-1H-pyrrole was used. **L3** was obtained as a light white solid (1.9 g, 45%). Solubility of **L3** in common organic solvent is very low, so only ¹H and ³¹P NMR spectra were recorded. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.96 – 7.66 (m, 4H), 7.59 (s, 2H), 7.48 (d, *J* = 6.1 Hz, 3H), 7.43 – 7.21 (m, 3H), 7.09 (dd, *J* = 13.9, 7.8 Hz, 1H), 6.58 (s, 1H), 5.97 (s, 1H), 3.35 (s, 3H).³¹P NMR (162 MHz, DMSO): δ -14.55. ESI-MS (m/z): [M-H]⁻ Calcd for C₂₃H₁₉NO₃PS, 420.0823; Found: 420.0831

Preparation of Ligand L4. Similar procedure as above was employed except 2-(2-bromophenyl)-1-benzothiophene was used. **L4** was obtained as a light white solid (3.8 g, 80%). Solubility of **L4** in common organic solvent is very low, so only ¹H and ³¹P NMR spectra were recorded. ¹H NMR (400 MHz, CDCl₃): δ 8.41 (br, 1H), 7.77 (br, 3H), 7.67 (br, 3H), 7.56 (br, 1H), 7.74-7.28 (m, 9H), 7.12 (br, 1H). ³¹P NMR (162 MHz, CDCl₃): δ 2.04. ESI-MS (m/z): [M-H]⁻ Calcd for C₂₆H₁₈O₃PS₂, 473.0435; Found: 473.0417.

Preparation of Ligand L5. Similar procedure as above was employed except 2-(2-bromophenyl)thiophene was used. **L5** was obtained as a light white solid (1.9 g, 45%). Solubility of **L5** in common organic solvent is very low, so only ¹H and ³¹P NMR spectra were recorded. ¹H NMR (400 MHz, DMSO): δ 7.86 (s, 1H), 7.58 (d, 2H), 7.52 (s, 1H), 7.47-7.34 (m, 4H), 7.29 (s, 4H), 7.17 (d, 3H), 7.05 (s, 1H). ³¹P NMR (162 MHz, DMSO): δ -24.82 (s). ESI-MS (m/z): [M-H]⁻ Calcd for C₂₂H₁₆O₃PS₂, 423.0278; Found: 423.0281.

Preparation of catalyst Pd1. Ligand L1 (490 mg,1.2 mmol) was suspended in THF (10 mL). (TMEDA)PdMe₂ (303 mg, 1.2 mmol) was added at room temperature. After 5 min the evolution of gas stopped and the suspension turned clear. The solution was stirred overnight at -5 °C. The resulting white precipitate was filtered, washed with diethyl ether and dried under reduced pressure to yield a tmeda-bridged dimer 1-TMEDA according to literature.⁵ 1-TMEDA was dispersed in 10 mL DMSO at room temperature. The solvent was removed under reduced pressure at 70 °C. The 1-TMEDA complex is only slightly soluble in DMSO, therefore complete dissolution of the solid indicate complete conversion of the starting material. After removal of DMSO under reduced pressure, the resulting solid was dispersed in diethyl ether, and

isolated by filtration to yield a white solid **Pd1** (487 mg, 67%). ¹H NMR (400 MHz, CDCl₃): δ 8.29-8.26 (m, 1H), 7.78 – 7.75 (m, 1H), 7.61-7.48 (m, 5H), 7.45 – 7.36 (m, 4H), 7.32 – 7.28 (t, *J* = 7.7 Hz, 3H), 7.21 – 7.16 (m, 1H), 7.08 – 7.03 (m, 1H), 6.38 (s, 2H), 2.96 (s, 6H, DMSO), 0.42 (s, 3H, Pd-*Me*). ¹³C NMR (100 MHz, DMSO): δ 150.91 (d, *J* = 4.3 Hz), 147.51 (s), 147.37 (s), 143.56 (s), 134.81 (d, *J* = 13.1 Hz), 134.16 (d, *J* = 3.4 Hz), 134.03 (s), 133.63 (s), 131.25 (s), 131.15 (d, *J* = 3.3 Hz), 130.26 (d, *J* = 6.7 Hz), 129.81 (d, *J* = 8.3 Hz), 129.31 (s), 128.79 (d, *J* = 11.2 Hz), 128.54 (s), 128.05 (s), 126.70 (s), 126.20 (s), 111.62 (s), 111.26 (s), 40.43 (s, DMSO), -0.66 (s, Pd-*Me*). ³¹P NMR (162 MHz, DMSO): δ 26.56. Anal. Calcd. for C₂₅H₂₅O₅PPdS₂: C, 49.47; H, 4.15. Found: C, 48.97; H, 4.28.

Preparation of catalyst Ni1. A suspension of L1 (200 mg, 0.49 mmol) and Na₂CO₃ (156 mg, 1.47 mmol) in 15 mL Dichloromethane was stirred for 6 h at room temperature. trans-[(PPh₃)₂Ni(Cl)Ph] (340mg, 0.49 mmol) was added in small portions. Dichloromethane was added until the volume of the solution reached 20 mL, and the reaction mixture was stirred for 24 h at room temperature. The resulting vellow-orange mixture was filtered over Celite and the volatiles were removed under vacuum. Toluene (3 mL) was added to the orange residue to afford a slurry, then hexanes (5 mL) were added and the mixture was stirred for 5 mins. The precipitate was recovered by filtration, washed with hexanes (3 x 10 mL) and dried for 20 h under dynamic vacuum to yield a yellow solid Ni1 (237 mg, 60%).¹H NMR (400 MHz, CDCl₃): δ 8.28 (s, 1H), 7.83 (s, 1H), 7.64 (s, 2H), 7.49 (d, J = 8.3 Hz, 8H), 7.39 (d, J = 15.9 Hz, 6H), 7.26 (br, 8H), 7.13 - 6.94 (m, 2H), 6.79 (br, 1H), 6.71 (br, 16.59 (br, 1H), 6.46 (br, 1H), 6.21 (br, 2H), 6.16 (br, 1H), 5.85 (br, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 153.17 (s), 145.94 (d, J = 13.5 Hz), 143.50 (s), 138.03 (s), 137.38 (s), 136.66 (d, J = 12.4 Hz), 135.10 (d, J = 5.1 Hz), 134.44 (d, J = 10.6 Hz), 133.64 (d, J= 7.3 Hz), 131.44 (s), 130.80 (s), 129.97 (s), 129.88 (d, J = 6.1 Hz), 129.72 (s), 129.55 (d, J = 4.9 Hz), 129.43 (s), 129.28 (s), 128.16 (d, J = 9.6 Hz), 127.95 (d, J =7.5 Hz), 127.55 (s), 127.28 (d, J = 6.5 Hz), 127.09 (s), 126.80 (d, J = 8.0 Hz), 126.16 (s), 125.69 (s), 121.09 (s), 111.69 (s), 109.08 (s). ³¹P NMR (162 MHz, CDCl₃): δ 17.48 (d, $J_{PP} = 283$ Hz), 3.64 ($J_{PP} = 283$ Hz). Anal. Calcd. for $C_{46}H_{36}NiO_4P_2S$: C, 68.59; H, 4.50. Found: C, 68.26; H, 4.11.

Preparation of catalyst Pd2. Similar procedure was employed as catalyst **Pd1** except **L2** (200 mg, 0.44 mmol) was used. **Pd2** was obtained as a white solid (202 mg, 70%). ¹H NMR (400 MHz, DMSO): δ 8.02 (d, J = 3.2 Hz, 2H), 7.70 (t, J = 7.4 Hz, 1H), 7.65 – 7.48 (m, 9H), 7.29 – 7.17 (m, 5H), 7.00 – 6.93 (m, 1H), 2.54 (s, 6H, DMSO), 0.17 (s, 3H, Pd-*Me*). ¹³C NMR (100 MHz, DMSO): δ 154.29 (s), 154.16 (d, J = 3.6 Hz), 147.29 (d, J = 14.0 Hz), 134.92 (d, J = 13.1 Hz), 134.54 (d, J = 4.5 Hz), 133.85 (s), 133.67 (d, J = 11.1 Hz), 131.46 (s), 130.94 (d, J = 3.8 Hz), 130.84 (s), 130.32 (d, J = 6.7 Hz), 129.41 (s), 129.21 (s), 128.93 (d, J = 11.1 Hz), 128.62 (d, J = 8.3 Hz), 128.03 (s), 127.91 (s), 127.35 (d, J = 8.3 Hz), 124.67 (s), 123.22 (s), 121.30 (s), 111.71 (s), 106.74 (s), 40.43 (s, DMSO), -0.54 (s, Pd-*Me*). ³¹P NMR (162 MHz ,DMSO): δ 27.93. Anal. Calcd. for C₂₉H₂₇O₅PPdS₂: C, 53.01; H, 4.14. Found: C, 53.31; H, 4.26.

Preparation of catalyst Ni2. Similar procedure was employed as catalyst Ni1 except L2 (200 mg, 0.44 mmol) was used. Ni2 was obtained as a yellow powder (242 mg, 65%). ¹H NMR (400 MHz, CDCl₃): δ 8.33 – 8.29 (m, 1H, H_a), 7.77 (dd, J = 7.7, 3.9 Hz, 1H), 7.68 - 7.65 (m, 1H), 7.57 (d, J = 8.1 Hz, 1H), 7.50 (dd, J = 9.7, 8.4 Hz, 6H), 7.43 (dd, J = 4.7, 2.2 Hz, 4H, H_b), 7.32 (dt, J = 17.9, 9.0 Hz, 5H), 7.24 – 7.08 (m, 10H, H_c), 6.92 (dt, J = 14.5, 7.3 Hz, 2H, H_d), 6.74 (dd, J = 16.4, 7.7 Hz, 2H, H_7), 6.45 (d, J= 7.8 Hz, 1H, H₄), 6.27 - 6.21 (m, 1H), 6.19 (d, J = 3.6 Hz, 1H, H₅), 6.20 (d, J = 2.4Hz, 1H, H₆), 5.84 (dd, J = 11.0, 5.5 Hz, 1H, H₃). ¹³C NMR (100 MHz, CDCl₃): δ 155.15 (d, J = 1.6 Hz), 155.01 (s), 146.02 (s, J = 13.9 Hz), 145.88 (s), 137.98 (s), 137.26 (s), 136.94 (s), 136.82 (s), 135.53 (d, J = 5.0 Hz), 134.54 (d, J = 10.6 Hz), 133.40 (d, J = 7.1 Hz), 130.95 (s, J = 10.4 Hz), 130.84 (s), 130.07 (d, J = 2.0 Hz), 129.93 (d, J = 1.3 Hz), 129.65 (d, J = 3.9 Hz), 129.55 (d, J = 5.0 Hz), 129.39 (s), 128.69 (d, J = 7.3 Hz), 128.35 (s), 128.25 (s), 127.78 (s, J = 8.1 Hz), 127.70 (s), 127.12 (d, J = 6.6 Hz), 126.38 (s), 125.95 (s), 125.10 (s), 123.20 (s), 121.13 (s), 120.78 (s), 112.82 (s), 106.13 (s). ³¹P NMR (162 MHz, CDCl₃): δ 17.66(d, J_{PP} = 283 Hz), 4.55 (d, J_{PP} = 283 Hz). Key ¹H-¹H COSY correlations (CDCl₃): δ/δ 8.31 $(H_a)/7.40$ (H_b) , 7.40 $(H_b)/7.10$ (H_c) , 7.10 $(H_c)/6.89$ (H_d) , 6.76 $(H_7)/6.18$ (H_6) , 6.18(H₆)/5.85 (H₅), 5.85 (H₅)/6.45 (H₄). Key ¹H-¹H NOESY correlations (CDCl₃): δ/δ

8.31 (H_a)/6.18 (H₆), 8.31 (H_a)/6.76 (H₇), 8.31 (H_a)/7.10 (H_c), 8.31 (H_a)/7.40 (H_b). Anal. Calcd. for $C_{50}H_{38}NiO_4P_2S$: C,70.19; H, 4.48. Found: C, 69.73; H, 4.27.

Preparation of catalyst Pd3. Similar procedure was employed as catalyst **Pd1** except **L3** (200 mg, 0.47 mmol) was used. **Pd3** was obtained as a white solid (176 mg, 60%) ¹H NMR (400 MHz, CDCl₃): δ 8.30 (s, 1H), 7.62 – 7.34 (m, 11H), 6.99 (s, 1H), 6.74 (s, 1H), 6.11 (s, 1H), 5.49 (s, 1H), 3.48 (s, 3H), 2.92 (s, 6H, DMSO), 0.44 (s, 3H, Pd-*Me*). ¹³C NMR (100 MHz, DMSO): δ 147.62 (s), 147.48 (s), 136.81 (d, *J* = 12.9 Hz), 134.45 (d, *J* = 6.4 Hz), 134.12 (d, *J* = 12.4 Hz), 133.94 (s), 133.02 (d, *J* = 7.6 Hz), 130.72 (s), 130.56 (s, *J* = 15.6 Hz), 130.02 (s), 129.69 (d, *J* = 6.3 Hz), 129.55 (d, *J* = 6.4 Hz), 128.81 (s), 128.35 (d, *J* = 4.3 Hz), 128.26 (s), 127.28 (d, *J* = 8.1 Hz), 126.80 (d, *J* = 8.5 Hz), 123.57 (s), 112.15 (d, *J* = 1.7 Hz), 106.95 (s), 40.43 (s), 34.06 (s, DMSO), -0.52 (s, Pd-*Me*). ³¹P NMR (162 MHz DMSO): δ 22.15 (s). Anal. Calcd. for $C_{26}H_{28}NO_4PPdS_2$: C, 50.37; H, 4.55; N, 2.26. Found: C, 50.09; H, 4.73; N, 2.17.

Preparation of catalyst Ni3. Similar procedure was employed as catalyst **Ni1** except **L3** (200 mg, 0.47 mmol) was used. **Ni3** was obtained as a yellow powder (236 mg, 61%). ¹H NMR (400 MHz, CDCl₃): δ 7.89 – 7.84 (m, 1H), 7.75 (s, 3H), 7.49 – 7.43 (m, 6H), 7.36 (d, J = 6.6 Hz, 7H), 7.32 – 7.27 (m, 7H), 7.17 (dd, J = 15.9, 8.3 Hz, 2H), 7.01 (t, J = 8.0 Hz, 1H), 6.88 (t, J = 7.4 Hz, 1H), 6.78 (s, 1H), 6.58 (s, 1H), 6.40 (d, J = 7.5 Hz, 1H), 6.32 (d, J = 7.3 Hz, 2H), 6.23 (t, J = 7.1 Hz, 1H), 6.09 – 6.02 (m, 1H), 5.96 (t, J = 7.3 Hz, 1H), 3.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 146.75 (d, J = 13.5 Hz), 139.99 (s), 139.64 (s), 139.32 (s), 138.43 (s), 137.60 (s), 136.39 (d, J = 10.3 Hz), 135.75 (d, J = 11.5 Hz), 134.90 (d, J = 5.3 Hz), 130.24 (s), 129.88 (d, J = 1.8 Hz), 129.70 (s), 129.50 (s), 129.30 (d, J = 10.5 Hz), 128.63 (d, J = 4.3 Hz), 128.08 (d, J = 9.6 Hz), 127.78 (d, J = 10.2 Hz), 127.03 (d, J = 6.4 Hz), 126.66 (d, J = 8.1 Hz), 125.88 (d, J = 19.1 Hz), 123.46 (s), 121.39 (s), 111.15 (s), 108.32 (s), 34.11 (s, N-*Me*). ³¹P NMR (162 MHz, CDCl₃): δ 15.01(d, $J_{PP} = 172$ Hz), -0.38(d, $J_{PP} = 172$ Hz). Anal.

Calcd. for C₄₇H₃₉NNiO₃P₂S: C, 68.97; H, 4.80; N, 1.71. Found: C, 69.13; H, 5.24; N, 1.60.

Preparation of catalyst Pd4. Similar procedure was employed as catalyst **Pd1** except **L4** (200 mg, 0.42 mmol) was used. **Pd4** was obtained as a white solid (209 mg, 74%). Solubility of **Pd4** in common organic solvent is very low, so only ¹H and ³¹P NMR spectra were recorded. ¹H NMR (400 MHz, DMSO): δ 7.96 (d, *J* = 17.5 Hz, 2H), 7.72 (s, 3H), 7.62 (s, 1H), 7.53 (s, 6H), 7.30 (dd, *J* = 21.9, 13.0 Hz, 4H), 7.14 – 7.07 (m, 1H), 6.77 (s, 1H), 2.54 (s, 6H), 0.29 (s, 3H). ³¹P NMR (162 MHz, DMSO): δ 21.97 (s). Anal. Calcd. for C₂₉H₂₇O₄PPdS₃: C, 51.75; H, 4.04. Found: C, 52.11; H, 4.31.

Preparation of catalyst Ni4. Similar procedure was employed as catalyst Ni1 except L4 (200mg, 0.42 mmol) was used. Ni4 was obtained as a yellow powder (249 mg, 68%) ¹H NMR (400 MHz, CDCl₃): δ 7.77 – 7.73 (m, 2H), 7.61 (dd, J = 13.7, 7.5 Hz, 4H), 7.53 (d, J = 6.7 Hz, 2H), 7.43 (d, J = 8.6 Hz, 4H), 7.38 (s, 1H), 7.34 (d, J = 8.2 Hz, 4H), 7.31 (s, 2H), 7.28 (s, 4H), 7.24 (s, 3H), 7.21 (s, 3H), 7.20 (s, 1H), 7.17 (s, 1H), 7.15 (s, 1H), 7.12 (d, J = 7.2 Hz, 1H), 6.93 (t, J = 7.6 Hz, 1H), 6.74 (d, J = 7.6 Hz, 1H), 6.64 - 6.57 (m, 1H), 6.38 (dd, J = 15.5, 7.6 Hz, 2H), 6.25 (t, J = 7.0 Hz, 1H), 6.00 (t, J = 7.4 Hz, 1H). ¹³C NMR (100MHz, CDCl3): δ 146.28 (d, J = 12.8 Hz), 141.73 (d, J = 3.0 Hz), 139.63 (d, J = 7.1 Hz), 139.08 (s), 138.75 (s), 138.59 (s), 138.41 (s), 138.25 (s), 138.18 (d, J = 3.6 Hz), 135.64 (d, J = 10.9 Hz), 134.52 (d, J =4.7 Hz), 134.13 (d, J = 10.3 Hz), 132.85 (s), 132.30 (d, J = 7.3 Hz), 130.30 (s), 129.74 (s), 129.61 (s), 129.31 (s), 129.20 (s), 128.68 (s), 128.51 (d, J = 9.8 Hz), 128.23 (s), 127.99 (d, J = 9.7 Hz), 127.69 (d, J = 10.1 Hz), 127.35 (d, J = 7.4 Hz), 126.60 (d, J = 10.1 Hz) 6.6 Hz), 126.20 (s), 125.79 (s), 125.55 (s), 124.60 (d, J = 6.3 Hz), 124.15 (s), 121.63 (d, J = 8.0 Hz). ³¹P NMR (162MHz, CDCl3): δ 14.50(d, $J_{PP} = 277$ Hz), 0.79(d, $J_{PP} =$ 277 Hz). Anal. Calcd. for C₅₀H₃₈NiO₃P₂S₂: C,68.90; H, 4.39. Found: C, 69.13; H, 4.01.

Procedure for ethylene homopolymerization. In a typical experiment, a 350 mL glass thick-walled pressure vessel was charged with 19 mL toluene, 4 µmol of metal complex in 1 mL CH₂Cl₂ and a magnetic stir bar in a glovebox. The pressure vessel was connected to a high pressure line and the solution was degassed. The vessel was warmed to 80 °C using an oil bath (water bath for the case of polymerization at room temperature) and allowed to equilibrate for 15 min. With rapid stirring, the reactor was pressurized and maintained at 8.0 atm of ethylene. After a desired amount of time, the pressure vessel was vented and the polymer was precipitated in acidified methanol (methanol/HCl = 50/1) and dried at 50 °C for 24 h under vacuum. Analysis of Polymer Branching by ¹H NMR Spectroscopy. BD = $1000 \times 2(I_{CH3})/3(I_{CH2+CH}+I_{CH3})$. CH₃ (m, 0.77-0.95 ppm); CH₂ and CH (m, ca. 1.0-1.45 ppm).

Procedure for ethylene-polar monomer copolymerization. In a typical experiment, a 350 mL glass thick-walled pressure vessel was charged with toluene and polar monomer in total 19 mL and a magnetic stir bar in the glovebox. The pressure vessel was connected to a high pressure line and the solution was degassed. The vessel was warmed to 80 °C using an oil bath (water bath for the case of polymerization at room temperature) and allowed to equilibrate for 15 min. Complex in 1 mL CH₂Cl₂ was injected into the polymerization system via syringe. With rapid stirring, the reactor was pressurized and maintained at 8.0 atm of ethylene. After 1 h, the pressure vessel was vented and the polymer was precipitated in acidified methanol (methanol/HCl = 50/1) and dried at 80 °C for 24 h under vacuum.

2. NMR and ESI-MS of ligand L1-L5 and catalyst Pd1~Pd4, Ni1~Ni4.

Figure S1. ¹H NMR spectrum (400 MHz, CDCl₃) of L1.

Figure S2. ³¹P NMR spectrum (162 MHz, DMSO) of L1.

Figure S3. ¹³C NMR spectrum (100 MHz, DMSO) of L1.

Figure S4. ¹H NMR spectrum (400 MHz, CDCl₃) of L2.

Figure S5.³¹P NMR spectrum (162 MHz, DMSO) of L2

Figure S6. 13 C NMR spectrum (100 MHz, DMSO) of L2 (* is dichloromethane).

Figure S7.¹H NMR spectrum (400 MHz, CDCl₃) of L3. (*is hexanes)

Figure S8.³¹P NMR spectrum (162 MHz, DMSO) of L3

Figure S9. ¹H NMR spectrum (400 MHz, CDCl₃) of L4

Figure S11. ¹H NMR spectrum (400 MHz, CDCl₃) of catalyst Pd1.

Figure S12.³¹P NMR spectrum (162 MHz, DMSO) of catalyst Pd1.

Figure S13.¹³C NMR spectrum (100 MHz, DMSO) of catalyst Pd1.

Figure S14.¹H NMR spectrum (400 MHz, CDCl₃) of catalyst Ni1.

Figure S15.³¹P NMR spectrum (162 MHz, CDCl₃) of catalyst Ni1.

Figure S16.¹³C NMR spectrum (100 MHz, CDCl₃) of catalyst Ni1.

Figure S17.¹H NMR spectrum (400 MHz, DMSO) of catalyst Pd2. (* is H2O)

Figure S18.³¹P NMR spectrum (162 MHz, DMSO) of catalyst Pd2.

Figure S19.¹³C NMR spectrum (100 MHz, DMSO) of catalyst Pd2. (* is CDCl₃)

Figure S20.¹H NMR spectrum (400 MHz, CDCl₃) of catalyst Ni2.

Figure S21.³¹P NMR spectrum (162 MHz, CDCl₃) of catalyst Ni2.

Figure S22. ¹³C NMR spectrum (100 MHz, CDCl₃) of catalyst Ni2.

Figure S23. ¹H-¹H COSY NMR spectrum (CDCl₃) of catalyst Ni2.

Figure S24. ¹H-¹³C HSQC NMR spectrum (CDCl₃) of catalyst Ni2

Figure S26. ¹H NMR spectrum (400 MHz, CDCl₃) of catalyst Pd3.

Figure S27.¹³P NMR spectrum (162 MHz, DMSO) of catalyst Pd3.

Figure S28. ¹³C NMR spectrum (100 MHz, DMSO) of catalyst Pd3.

Figure S29. ¹H NMR spectrum (400 MHz, CDCl₃) of catalyst Ni3.

Figure S30. ³¹P NMR spectrum (162 MHz, CDCl₃) of catalyst Ni3.

Figure S31. ¹³C NMR spectrum (100 MHz, CDCl₃) of catalyst Ni3.

Figure S32. ¹H NMR spectrum (400 MHz, DMSO) of catalyst Pd4.(* is H₂O)

Figure S33. ³¹P NMR spectrum (162 MHz, DMSO) of catalyst Pd4.

Figure S34. ¹H NMR spectrum (400 MHz, CDCl₃) of catalyst Ni4.

Figure S35.³¹P NMR spectrum (162 MHz, CDCl₃) of catalyst Ni4.

Figure S36. ¹³C NMR spectrum (100 MHz, CDCl₃) of catalyst Ni4.

Figure S37. ESI-MS of L1.

Figure S39. ESI-MS of L3.

Figure S41. ESI-MS of L5.

3. NMR figures of (co)polymers.

Figure S42. ¹H NMR spectrum of the PE from table 1. (C₂D₂Cl₄, 120°C).

Figure S43. ¹H NMR spectrum of the PE from table 1, entry 3. ($C_2D_2Cl_4$, 120°C).

Figure S44. ¹H NMR spectrum of the PE from table 1. ($C_2D_2Cl_4$, 120°C).

Figure S45. ¹³C NMR spectrum of the PE from table 1, entry 6. (C₂D₂Cl₄, 120°C)

Figure S46. ¹³C NMR spectrum of the PE from table 1, entry 8. (C₂D₂Cl₄, 120°C)

Figure S47. ¹H NMR spectrum of the PE from table 1. (C₂D₂Cl₄, 120°C).

Figure S48. ¹³C NMR spectrum of the PE from table 1, entry 7. ($C_2D_2Cl_4$, 120°C).

Figure S49. ¹³C NMR spectrum of the PE from table 1, entry 11. (C₂D₂Cl₄, 120°C)

Figure S50. ¹H NMR spectrum of the polymer from table 2, entry 1. ($C_2D_2Cl_4$, 120°C).

Figure S51. ¹H NMR spectrum of the polymer from table 2, entry 2. ($C_2D_2Cl_4$, 120°C).

Figure S52. ¹H NMR spectrum of the polymer from table 2, entry 3. (CDCl₃).

Figure S53. ¹H NMR spectrum of the polymer from table 2, entry 4. ($C_2D_2Cl_4$, 120°C).

Figure S54. ¹H NMR spectrum of the polymer from table 2, entry 5. ($C_2D_2Cl_4$, 120°C).

Figure S55. ¹H NMR spectrum of the polymer from table 2, entry 6. ($C_2D_2Cl_4$, 120°C).

Figure S56. ¹H NMR spectrum of the polymer from table 2, entry 7. ($C_2D_2Cl_4$, 120°C).

Figure S57. ¹H NMR spectrum of the polymer from table 2, entry 8. ($C_2D_2Cl_4$, 120°C).

4. DSC and GPC traces of (co)polymers.

Figure S58. DSC data of the polymer from table 1, entry 1.

Figure S59. DSC data of the polymer from table 1, entry 2.

Figure S60. DSC data of the polymer from table 1, entry 3.

Figure S61. DSC data of the polymer from table 1, entry 8.

Figure S62. DSC data of the polymer from table 1, entry 11.

Figure S63. DSC data of the polymer from table 2, entry 1.

Figure S64. DSC data of the polymer from table 2, entry 2.

Figure S65. DSC data of the polymer from table 2, entry 3.

Figure S66. DSC data of the polymer from table 2, entry 4.

Figure S67. DSC data of the polymer from table 2, entry 5.

Figure S68. DSC data of the polymer from table 2, entry 6.

Figure S69. DSC data of the polymer from table 2, entry 7.

Figure S70. DSC data of the polymer from table 2, entry 8.

Figure S71. GPC trace of the polymer from table 1, entry 1.

Figure S72. GPC trace of the polymer from table 1, entry 2.

Figure S73. GPC trace of the polymer from table 1, entry 3.

Figure S74. GPC trace of the polymer from table 1, entry 6.

Figure S75. GPC trace of the polymer from table 1, entry 7.

Figure S77. GPC trace of the polymer from table 1, entry 9.

Figure S78. GPC trace of the polymer from table 1, entry 10.

Figure S79. GPC trace of the polymer from table 1, entry 11.

Figure S80. GPC trace of the polymer from table 2, entry 1.

Figure S81. GPC trace of the polymer from table 2, entry 2.

Figure S82. GPC trace of the polymer from table 2, entry 4.

Figure S83. GPC trace of the polymer from table 2, entry 5.

Figure S84. GPC trace of the polymer from table 2, entry 6.

Figure S85. GPC trace of the polymer from table 2, entry 7.

Figure S86. GPC trace of the polymer from table 2, entry 8.

5. X-ray crystallography data

Ni-O
C46 H36 Ni O4 P2 S
805.46
298(2)
0.71073
Monoclinic
Cc
10 2889(9)
20.9035(18)
183345(17)
90.00
102 106(2)
90.00
3855 6(6)
4
1 388
0.685
1672
2 319-26 119
_11→12
-20-24
-20 724 -21
11/36
4299
0.0417
/200 / 2 / /88
$R_{\rm r} = 0.0539$
$wB_{2} = 0.1368$
$R_2 = 0.1508$ $R_3 = 0.0700$
$wR_{2} = 0.1457$
1 046

Crystal data and structure refinement for Ni1

Formula	C51H40Cl2NiO4P2S
Formula weight	940.44
Temperature[K]	298(2)
λ(Mo-Kα)[Å]	0.71073
Crystal system	Monoclinic
Space group	P2(1)/c
a[Å]	18.0878(16)
b[Å]	13.8845(13)
c[Å]	17.3793(15)
α[°]	90.00
β[°]	101.127(2)
γ[°]	90.00
Volume[Å3]	4282.6(7)
Z	4
$D(calc)[g \cdot cm - 3]$	1.459
μ[mm-1]	0.749
F(000)	1944
θ min-max (°)	2.299-22.453
h	-21-21
k	-16-15
1	-16-20
Reflections collected	21422
Reflections unique	7530
R(int)	0.0884
Data / restraints / parameters	7530/0/550
Final R indices [I>2 σ (I)]	R1 =0.0529
	wR2 = 0.1254
R indices (all data)	R1 = 0.0993
	wR2 = 0.1512
GOF on F2	0.999

Crystal data and structure refinement for Ni2

Formula	C32H33O5PPdS2
Formula weight	699.07
Temperature[K]	298(2)
λ (Mo-K α)[Å]	0.71073
Crystal system	Triclinic
Space group	P-1
a[Å]	10.0750(8)
b[Å]	11.6829(9)
c[Å]	14.3961(12)
α[°]	75.3070(10)
β[°]	72.5830(10)
γ[°]	84.033(2)
Volume[Å ³]	1563.2(2)
Z	2
$D(calc)[g \cdot cm^{-3}]$	1.485
$\mu[mm^{-1}]$	0.817
F(000)	716
θ min-max (°)	2.592-23.712
h	-11-9
k	-13-11
l	-17-15
Reflections collected	7934
Reflections unique	5407
R(int)	0.0406
Data / restraints / parameters	5407/0/439
Final R indices [1>2 σ (1)]	R1 = 0.0485
Final K indices $[1 > 2\sigma(1)]$	wR2 = 0.1087
R indices (all data)	R1 = 0.0707
	wR2 = 0.1160
GOF on F ²	1.092

Crystal data and structure refinement for Pd1

■ REFERENCES

(1) J. M. Becht, S. Ngouela, A. Wagner and C. Mioskowski, *Tetrahedron.*, 2004, **60**, 6853-6857.

(2) Q. W. Zhang, K. An, L. C. Liu, S. Guo, C. Jiang, H. Guo and W. He, *Angew. Chem. Int. Ed.*, 2016, **55**, 6319-6323.

(3) T. Truong, M. Mesgar, K. K. A. Le and O. Daugulis, J. Am. Chem. Soc., 2004, 136, 8568-8576.

(4) A. Skhiri, A. Beladhria, K. Yuan, J.-F. Soulé, R. Ben Salem and H. Doucet, *Eur. J. Org. Chem.*, 2015, **2015**, 4428-4436.

(5) D. Guironnet, P. Roesle, T. Runzi, I. Gottker-Schnetmann, S. Mecking, J. Am. Chem. Soc., 2009, **131**, 422-423.