Supplementary Information

Biocompatible polythiophene-g-polycaprolactone copolymer as efficient dopamine sensor platform

Brenda G. Molina,^{1,2} Anca D. Bendrea,³ Luminita Cianga,³ Elaine Armelin,^{1,2,*} Luis J. del Valle,^{1,2} Ioan Cianga,^{3,*} and Carlos Alemán^{1,2,*}

¹ Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain

² Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain

³ Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore–Ghica Voda Alley, 700487, Iasi, Romania

Correspondence to: elaine.armelin@upc.edu, ioanc@icmpp.ro and carlos.aleman@upc.edu, ioanc@icmpp.ro and carlos.aleman@upc.edu, ioanc@icmpp.ro and carlos.aleman@upc.edu)

Table S1. Reaction conditions^a and hydrodynamic characteristics of Th-PCL macromonomer.

Initiator [I] × 10 ⁻² (mol/L) ^b	Molar ratio [I]/[ɛ-CL]	Molar ratio [Sn(oct) ₂]/[I]	Mn _{th}	$\mathbf{Mn}_{\mathbf{H}-\mathbf{NMR}}(\mathbf{DP}_{n \mathrm{H}-\mathrm{NMR}})$	Mn _{GPC}	PDI _{GPC}
61	1/20	1/200	2400	2511 (21)	3120	1.46

^a In bulk at 110°C for 24h, ^bI=3-thiophene methanol

The relative molecular weight and molecular weight distribution (PDI) were determined by gel permeation chromatography (GPC) using WGE SEC-3010 multidetection system, consisting of a pump, two PL gel columns (PLgel 5micro Mixed C Agilent and PLgel 5micro Mixed D Agilent), dual detector RI/VI (Refractometer/Viscometer) WGE SEC-3010, with chloroform (CHCl₃), and flow rate of 1.0 ml/min at 30°C. The RI/VI detector was calibrated with PS standards (580-467,000 DA) having narrow molecular weight distribution. The system was also equipped with a UV detector WGE SEC-3010 and Bi-MwA Brookhaven multi-angle SLS detector. Data were analyzed using PARSEC Chromatography software.

Figure S1. FTIR spectrum of Th-PCL macromonomer.

Figure S2. Control voltammogram for the oxidation of (a) HMeEDOT and (b) Th-PCL in acetonitrile with 0.1 M TBATFB). Voltammograms were recorded using a 0.5×0.5 cm² steel AISI 316 substrate as working electrode with an initial and final potential of 0.00 V, and + 1.80 V as reversal potential. The scan rate was 50 mV/s.

Figure S3. Photographs displaying (a) 80:20 PTh-*g*-PCL and (b) 60:40 PTh-*g*-PCL films before and after degradation assays (35 days in PBS, pH= 7.4, at 37 °C).

Figure S4. Degradation curves (PBS, pH= 7.4, at 37 °C) of PHMeDOT, copolymer 80HMeDOT:20Th-PCL and 60HMeDOT:40Th-PCL.