Supporting Information

Acrylamides with hydrolytically labile carbonate ester side chains as versatile building blocks for well-defined block copolymer micelles via RAFT polymerization

Sabah Kasmi,^a Benoit Louage,^a Lutz Nuhn,^a Glenn Verstraete^a, Simon Van Herck^a, Mies J. van Steenbergen ^b, Chris Vervaet; Wim E. Hennink^b, Bruno G. De Geest,^{a*}

^a Department of Pharmaceutics, Ghent University, Ghent, Belgium

^b Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands

Figure S1. ¹H-NMR of CI-activated ethanol.

Figure S2. ¹H-NMR of HEAm-EC.

Figure S3. ESI-MS of HEAm-EC.

Figure S4. ¹H-NMR of CI-activated benzylalcohol.

Figure S5. ¹H-NMR of HEAm-BC.

Figure S6. ESI-MS of HEAm-BC.

Table S1. Supramolecular	characteristics of s	synthesized block copolymers.
--------------------------	----------------------	-------------------------------

Polymer	Volume mean (nm) ^a	Đª
pHEAm ₆₄ -pHEAmEC ₂₆	10.99	0.36
pHEAm ₆₄ -pHEAmEC ₅₆	32.12	0.16
pHEAm ₁₄₀ -pHEAmEC ₈₈	44.63	0.036
pHEAm ₁₄₀ -pHEAmEC ₁₆₀	86.47	0.13
PEG-pHEAmEC ₄₁	29.33	0/12
PEG-pHEAmEC ₈₁	46.33	0.10
pHEAm ₆₄ -pHEAmBC ₂₅	27.40	0.26
pHEAm ₆₄ -pHEAmBC ₆₈	65.22	0.32
pHEAm ₁₄₀ -pHEAmBC ₉₁	94.69	0.40
pHEAm ₁₄₀ -pHEAmBC ₁₇₂	91.54	0.27
PEG-pHEAmBC ₄₂	35.56	0/081
PEG-pHEAmBC78	101.23	0.050

^a Numeric values of volume mean and Đ, measured by DLS at 25°C (n=3)

PTX-concentration	pHEAM ₆₄ - pHEAMEC ₂₆	pHEAM ₆₄ - pHEAMBC ₂₅	DHEAM ₆₄ -	pHEAM ₆₄ - pHEAMBC ₆₈	PEG-pHEAMEC ₄₁	PEG-pHEAMBC ₄₂	PEG-pHEAMEC ₈₁	PEG-pHEAMBC78
(µM)	mg/mL	mg/mL	mg/mL	mg/mL	mg/mL	mg/mL	mg/mL	mg/mL
CMC (mg/mL)	0.081 ± 0.03	0.024 ± 0.002	0.031 ± 0.002	0.0047 ± 0.0004	0.023 ± 0.004	0.0036 ± 0.0006	0.0096 ± 0.003	0.0033 ± 0.0003
	2 1.7 ⁻	1 0.688	0.516	0.152	0.208	3 0.0368	8 0.042	0.032
	1 0.85	5 0.344	0.258	0.076	0.104	4 0.0184	0.021	0.016
0.	1 0.08	5 0.034	0.0258	0.0076	0.0104	4 0.00184	0.0021	0.0016
0.0	1 0.008	5 0.0034	0.00258	0.00076	0.00104	4 0.000184	0.00021	0.00016
0.00	1 0.0008	5 0.00034	0.000258	0.000076	0.000104	4 0.0000184	0.000021	0.000016
0.000	1 0.00008	5 0.000034	0.0000258	0.0000076	0.0000104	4 0.00000184	0.0000021	0.0000016
0.0000	1 0.00008	5 0.0000034	0.00000256	0.0000076	0.00000104	4 0.000000184	0.00000021	0.00000016

Table S2. Overview of	of CMC values and	1 polymer	concentrations	in the s	samples use	ed for the	MTT assav
	<u> </u>		0011001101010				

Figure 7. DAD-SEC traces of polymers before and after chain extension of the $_p$ HEAm_x- en PEG-macroCTA with HEAm-EC/HEAm-BC.