Supporting Information

Diverse approaches to star polymers via cationic and radical RAFT cross-linking reactions using mechanistic transformation

Mineto Uchiyama,^a Kotaro Satoh,^{*a,b} Thomas G. McKenzie,^c Qiang Fu,^c Greg. G. Qiao^{*c} and Masami Kamigaito^{*a}

^aDepartment of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan ^bPrecursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan ^cPolymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia

e-mail: satoh@chembio.nagoya-u.ac.jp, kamigait@chembio.nagoya-u.ac.jp, gregghq@unimelb.edu.au

Contents:

Fig. S1	······S2
Fig. S2	······S2
Fig. S3	······S3
Fig. S4	······S3
Fig. S5	S4
Fig. S6	S5
Fig. S7	S5
Fig. S8	S6
Fig. S9	S7

Fig. S1. SEC curve of the polymer obtained via cationic RAFT polymerization of IBVE in *n*-hexane/CH₂Cl₂/Et₂O (80/10/10) at -78 °C: [IBVE]₀/[CTA]₀/[TfOH]₀ = 400/4.0/0.02 mM.

Fig. S2. ¹H NMR spectrum (in CDCl₃ at 55 °C) of poly(IBVE) obtained in the same experiments as for Fig. S1.

Fig. S3. ¹H NMR spectra (in CDCl₃ at 55 °C) of macro RAFT and the polymers obtained after radical cross-linking reaction of macro RAFT using **4** as divinyl compound.

Fig. S4. SEC curves of the polymers obtained via cationic RAFT block polymerization and radical RAFT cross-linking reaction of block macro RAFT: [block macro RAFT]₀/[V-70]₀ = 10-30/6.0 mM at 20 °C.

Fig. S5. Time-conversion curve and SEC curves of the polymers obtained via cationic RAFT block polymerization and radical RAFT cross-linking reaction of block macro RAFT under UV irradiation: [block macro RAFT]₀ = 10 mM in toluene at 20 °C under UV irradiation (λ = 366 nm).

Fig. S6. SEC curves of the polymers obtained via combination of cationic block DT polymerization and radical cross-linking reaction: $[IBVE]_0/[CTA2]_0/[TfOH]_0/[6]_{add} = 400/4.0/0.02/40$ mM in *n*-hexane/CH₂Cl₂/Et₂O (80/10/10) at -78 °C; [block copolymer]_0/[V-70]_0 = 10/6.0 mM in toluene at 20 °C.

Fig. S7. ¹H NMR spectrum (in CDCl₃ at 55 °C) of poly(IBVE-*b*-**6**) obtained via cationic block DT polymerization of IBVE and **6** with CTA2 in *n*-hexane/CH₂Cl₂/Et₂O (80/10/10) at – 78 °C, $M_n = 13700$, $M_w/M_n = 1.13$: [IBVE]₀/[CTA2]₀/[TfOH]₀/[**6**]_{add} = 400/4/0.02/40 mM.

Fig. S8. ¹H NMR spectra (in CDCl₃ at r.t.) of divinyl compounds 4 (A), 5 (B), 6 (C).

Fig. S9. ¹³C NMR spectra (in CDCl₃ at r.t.) of divinyl compounds 4 (A), 5 (B), 6 (C).