Electronic Supplementary Information

Synthesis of Ultra-High Molecular Weight ABA Triblock Copolymers via Aqueous RAFT-mediated Gel Polymerisation, End Group Modifications and Chain Coupling

Vu H. Dao,^a Neil R. Cameron,^{*b,c} and Kei Saito^{*a}

Table of Contents

Materials2
Synthetic Procedures
Synthesis of Polymers A1 to A8 by RAFT Polymerisation of AA2
Synthesis of Polymers AB1 to AB8 by RAFT Polymerisation of AM
Controlled Synthesis of an ABA Triblock Copolymer by RAFT Polymerisation4
Aminolysis of AB Diblock Copolymers AB1 to AB85
Screening Reactions
Screening Polymerisations for the Synthesis of the AB Diblock Copolymers
Screening Reactions for the Aminolysis of AB Diblock Copolymer AB17
Screening Reactions for the Aminolysis of AB Diblock Copolymers AB2 to AB89
Screening Reactions for the Aminolysis of AB Diblock Copolymers AB1 to AB8 at pH 810
Aminolysis Reactions with a [BuNH ₂]:[COOH] ratios of 278:1 and 556:111
OVERLAY OF SEC CHROMATOGRAMS
SEC Chromatograms of A Block Polymers, AB Diblock and ABA Triblock Copolymers12
^a School of Chemistry, Monash University, Clayton, VIC 3800, Australia. E-mail: kei.saito@monash.edu; Tel: +61 3 9905 4600; Fax: +61 3 9905 8501.

^b Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia. E-mail: neil.cameron@monash.edu; Tel: +61 3 9902 0774.

^c School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom

Materials

Acrylic acid (AA, Aldrich, 99%) was pre-treated with basic aluminium oxide (Acros Organics) to remove the radical inhibitor monomethyl ether hydroquinone (MEHQ) prior to use. Acrylamide (AM, Sigma, 99%), 3-(((1-carboxyethyl)thio)-carbonothioyl)thio)propanoic acid (CETCTP, Boron Molecular, 90%), ammonium persulfate (APS, Sigma-Aldrich, 98%), sodium formaldehyde sulfoxylate dihydrate (SFS, Aldrich, 98%), *n*-butylamine (Sigma-Aldrich, 99.5%), sodium nitrate (Merck, 99.9%), sodium bicarbonate (Merck, 99.9%), *N*,*N*-dimethylformamide (DMF, Ajax FineChem, 99.9%), water (deionised and Milli-Q grades), deuterium oxide (Merck, 99.9%) were used as received without further purification.

Synthesis of Polymers A1 to A8 by RAFT Polymerisation of AA

The homopolymers of AA (polymers **A1** to **A8**) were synthesised according to the general procedure outlined in the main manuscript. The quantities of monomer, RAFT reagent, internal standard, solvent, and initiators employed for the synthesis of these polymers are detailed in Table 1.

		Polymer Entry									
	A1	A2	A3	A4	A5	A6	A7	A8			
AA		5.78 mL ^a 46.3 mmol									
СЕТСТР	84.8 mg 0.333 mmol	42.4 mg 0.167 mmol	28.3 mg 0.111 mmol	21.2 mg 0.083 mmol	17.0 mg 0.067 mmol	8.50 mg 0.033 mmol	2.83 mL ^b 0.022 mmol	2.12 mL ^b 0.017 mmol			
DMF				0.30) mL ^c						
H ₂ O	2.10 mL	3.16 mL	3.52 mL	3.69 mL	3.80 mL	4.01 mL	1.26 mL	2.00 mL			
APS	1.27 mL ^d 0.056 mmol	634 μL ^d 0.028 mmol	423 μL ^d 0.019 mmol	317 μL ^d 0.014 mmol	254 μL ^d 0.011 mmol	127 μL ^d 0.006 mmol	85 μL ^d 0.004 mmol	63 μL ^d 0.003 mmol			
SFS	856 μL ^e 0.056 mmol	428 μL ^e 0.028 mmol	285 μL ^e 0.019 mmol	214 μL ^e 0.014 mmol	171 μL ^e 0.011 mmol	86 μL ^e 0.006 mmol	57 μL ^e 0.004 mmol	43 μL ^e 0.003 mmol			

Table S1. Quantities of reagents and solvent used in the synthesis of polymers A1 to A8.

^{*a*} An 57.6 wt% (8 M) stock solution of AA was prepared and utilised for the synthesis of all polymers A1 to A8. ^{*b*} A 0.2 wt% stock solution of RAFT agent CETCTP was prepared and utilised for the synthesis of polymers A7 and A8. ^{*c*} DMF was used as an internal standard for monitoring of monomer conversion. ^{*d*} A 1.0 wt% stock solution of APS was prepared and utilised for the synthesis of all polymers A1 to A8. ^{*e*} A 1.0 wt% stock solution of SFS was prepared and utilised for the synthesis of all polymers A1 to A8.

Synthesis of Polymers AB1 to AB8 by RAFT Polymerisation of AM

The AB diblock copolymers of AA and AM (polymers **AB1** to **AB8**) were also synthesised according to the general procedure outlined in the main manuscript. Note that the synthesis of each AB diblock copolymer employed the same numbered A block as the macro chain transfer agent (macro-CTA). For example, polymer **A1** was used as the macro-CTA for the synthesis of polymer **AB1**. The quantities of monomer, RAFT reagent, internal standard, solvent, and initiators employed for the synthesis of these polymers are detailed in Table 2.

		Polymer Entry									
	AB1	AB2	AB3	AB4	AB5	AB6	AB7	AB8			
AA		5.86 mL ^a 46.9 mmol									
СТА	8.7 mg 1.67 μmol	13.1 mg 1.11 μmol	23.2 mg 1.11 μmol	28.2 mg 0.83 μmol	38.1 mg 0.83 μmol	56.5 mg 0.67 μmol	78.7 mg 0.67 μmol	115 mg 0.67 μmol			
DMF		0.30 mL ^b									
H ₂ O	4.13 mL	4.13 mL	4.13 mL	4.13 mL	4.13 mL	4.13 mL	4.13 mL	4.13 mL			
APS	7 μL ^c 0.28 μmol	4 μL ^c 0.19 μmol	4 μL ^c 0.19 μmol	3 μL² 0.14 μmol	3 μL² 0.14 μmol	3 μL ^c 0.14 μmol	3 μL² 0.14 μmol	3 μL² 0.14 μmol			
SFS	5 μL ^d 0.28 μmol	3 μL ^d 0.19 μmol	3 μL ^d 0.19 μmol	2 μL ^d 0.14 μmol							

^{*a*} An 56.9 wt% (8 M) stock solution of AM was prepared and utilised for the synthesis of all polymers AB1 to AB8. ^{*b*} DMF was used as an internal standard for monitoring of monomer conversion. ^{*c*} A 1.0 wt% stock solution of APS was prepared and utilised for the synthesis of all polymers AB1 to AB8. ^{*d*} A 1.0 wt% stock solution of SFS was prepared and utilised for the synthesis of all polymers AB1 to AB8.

Controlled Synthesis of an ABA Triblock Copolymer by RAFT Polymerisation

A controlled experiment was performed to synthesise an ABA triblock copolymer using only RAFT polymerisation. A similar derivative of AB diblock copolymer **AB1** ($M_n = 626$ k, D = 1.46) was used as the macro-CTA for the second chain extension stage with AA to see whether the chain would grow efficiently. The quantities of monomer, macro-CTA, solvent, and initiators employed for this reaction is detailed in Table 3.

AA	Macro-CTA	DMF	H2O	APS	SFS
5.78 mL ^a 46.3 mmol	0.928 g 1.48 umol	0.30 mL ^b	4.19 mL	6 μL ^c 0.25 μmol	4 μL ^d 0.25 μmol

Table S3.	Quantities of	f reagents and	solvent use	ed in the s	second chai	n extension	stage usin	ig RAFT	T polymerisat	ion
-----------	---------------	----------------	-------------	-------------	-------------	-------------	------------	---------	---------------	-----

^{*a*} An 57.6 wt% (8 M) stock solution of AA was prepared and utilised for this chain extension step. ^{*b*} DMF was used as an internal standard for monitoring of monomer conversion. ^{*c*} A 1.0 wt% stock solution of APS was prepared and utilised for this reaction. ^{*d*} A 1.0 wt% stock solution of SFS was prepared and utilised for this reaction.

The polymerisation was conducted for 24 hours and the final monomer conversion was determined to be approximately 4%. The final molecular weight (M_n) of the polymer was analysed with SEC and determined to be 566 k (D = 1.80). An overlay of the SEC traces for the A block, the AB diblock copolymer and the ABA triblock copolymer from this polymerisation is shown in Figure 1 below.

FigureS 1. Overlay of SEC chromatograms for the A block, AB diblock and ABA triblock copolymers from the second chain extension step using only RAFT polymerisation.

Aminolysis of AB Diblock Copolymers AB1 to AB8

AB diblock copolymers **AB1** to **AB8** were subjected to aminolysis using *n*-butylamine as the nucleophilic reagent according to the general procedure outlined in the main manuscript. The final optimised quantities of *n*-butylamine used for the aminolysis reactions are shown in Table 4.

		Polymer Entry								
	ABA1	ABA2	ABA3	ABA4	ABA5	ABA6	ABA7	ABA8		
Polymer Concentration		50 mg of the AB Diblock Copolymer in 10 mL of H ₂ O (0.5 wt%)								
[BuNH ₂]: [C=S] Ratio	20,000:1	20,000:1	20,000:1	131,000:1	176,000:1	654,000:1	911,000:1	1,330,000:1		
[BuNH ₂]: [COOH] Ratio	278:1	122:1	69:1	278:1	278:1	556:1	556:1	556:1		
V(<i>n</i> -BuNH₂) (mL)	0.177	0.182	0.197	1.20	1.70	5.40	7.00	11.3		
Reaction Time (h)	6	8	12	6	24	2	4	24		

Table S4. Quantities of *n*-butylamine in the synthesis of polymers ABA1 to ABA8

Screening Polymerisations for the Synthesis of the AB Diblock Copolymers

Each of the macro-CTA (polymers **A1** to **A8**) were initially subjected to polymerisation at 20°C for 24 hours, with three initial monomer to macro-CTA ratios (DP_{target})ranging from 28,100 to 56,300. The ratios between the macro-CTA and the redox initiators were initially maintained at 6:1:1. The monomer conversion (obtained by ¹H NMR) and the SEC data for these screening polymerisations are shown in Table 5 and Table 6.

NA	<i>M</i> _{n,SEC} of Macro CTA (×10 ³)	DP _{target}					
Wacro-CTA		28,100	42,200	56,300			
A1	5.21	77%	73%	63%			
A2	11.8	61%	67%	41%			
A3	20.9	65%	70%	46%			
A4	33.9	68%	57%	55%			
A5	45.7	49%	54%	51%			
A6	84.8	52%	51%	47%			
A7	118	18%	18%	22%			
A8	173	16%	20%	15%			

Table S5. Monomer conversions obtained from the initial screening polymerisations of the AB diblock copolymers.

Monomer conversion was determined by ¹H NMR at the 24 hours mark with DMF as the internal standard.

Macro-CTA		DP _{target}							
	M _{n,SEC} of Macro-CTA	28,100		42,200		56,300			
	(*10°)	<i>M</i> _{n,SEC} (×10 ³)	Ð	M _{n,SEC} (×10 ³)	Ð	<i>M</i> _{n,SEC} (×10 ³)	Ð		
A1	5.21	557	1.49	705	1.65	610	1.63		
A2	11.8	403	1.31	542	1.44	517	1.24		
A3	20.9	355	1.33	502	1.39	490	1.20		
Α4	33.9	336	1.36	456	1.22	537	1.32		
A5	45.7	311	1.22	352	1.31	513	1.21		
A6	84.8	291	1.24	359	1.30	440	1.36		
A7	118	221	1.19	279	1.21	370	1.27		
A8	173	252	1.20	304	1.22	306	1.21		

TableS 6. SEC data obtained from the initial screening polymerisations of the AB diblock copolymers.

Screening Reactions for the Aminolysis of AB Diblock Copolymer AB1

Six different aminolysis reactions were initially performed on AB diblock copolymer AB1. Two polymer concentrations (0.5 and 1.0 wt%) were used. Three different molar excess ratios of *n*-butylamine to the thiocarbonylthio groups ranging from 2,000 to 200,000 were employed. The changes in molecular weight and dispersity of polymer AB1 were monitored by SEC and these results are shown in Figure 2 to Figure 4.

Figure S2. SEC data for the aminolysis of polymer AB1 at 0.5 and 1.0 wt% using an *n*-butylamine excess of 2,000-fold.

Figure S3. SEC data for the aminolysis of polymer AB1 at 0.5 and 1.0 wt% using an *n*-butylamine excess of 20,000-fold.

Figure S4. SEC data for the aminolysis of polymer AB1 at 0.5 and 1.0 wt% using an *n*-butylamine excess of 200,000-fold.

Screening Reactions for the Aminolysis of AB Diblock Copolymers AB2 to AB8

AB diblock copolymers **AB2** to **AB8** were subjected to aminolysis reactions with an initial concentration of 0.5 wt%. The ratio of *n*-butylamine to thiocarbonylthio functionality was maintained at 20,000. SEC was used to monitor the molecular weight growth over 24 hours. The changes in molecular weight and dispersity for polymers **AB2** to **AB8** is detailed in Table 7.

Reaction	M _{n,SEC} (×10 ³) / Đ								
(hour)	AB2	AB3	AB4	AB5	AB6	AB7	AB8		
0	542	502	537	513	602	641	582		
	1.44	1.39	1.32	1.21	1.51	1.36	1.23		
6	937	943	880	733	938	853	662		
	1.65	1.59	1.45	1.30	1.99	1.74	1.50		
8	1,000	960	879	749	889	813	666		
	1.68	1.61	1.53	1.33	2.15	1.79	1.56		
10	1,070	979	925	768	1,110	741	708		
	1.69	1.61	1.52	1.34	1.88	2.08	1.51		
12	1,050	1,000	945	815	989	776	703		
	1.76	1.67	1.53	1.36	2.12	2.00	1.59		
14	1,090	936	970	801	1,090	835	651		
	1.77	1.76	1.55	1.37	2.14	1.98	1.64		
16	1,090	1,020	990	810	874	841	668		
	1.82	1.74	1.59	1.41	2.45	1.98	1.64		
24	1,160	1,030	991	801	961	852	704		
	1.78	1.70	1.60	1.40	2.50	2.14	1.70		

Table S7.	SEC data for the aminolysis of po	olymer AB2 to AB8 using an	n-butylamine excess of	20.000-fold.
Tuble 3/1	see data for the animolysis of p	Signici ADE to ADO using un	n butylunnic creess of	20,000 1010.

Screening Reactions for the Aminolysis of AB Diblock Copolymers AB1 to AB8 at pH 8

AB diblock copolymers **AB1** to **AB8** were subjected to aminolysis reactions with an initial concentration of 0.5wt%. The initial pH of these reaction mixtures ranged from approximately 4.0 to 4.5 depending on the chain length of the A blocks. The pH of these reaction mixtures was adjusted to approximately 8 using sodium hydroxide solution. The ratio of *n*-butylamine to thiocarbonylthio functionality was once again maintained at 20,000 for comparison between low pH and high pH. SEC was used to monitor the molecular weight growth over 24 hours. The changes in molecular weight and dispersity for polymers **AB1** to **AB8** is detailed in Table 8.

Reaction		M _{n,SEC} (×10 ³) / Đ									
(hour)	AB1	AB2	AB3	AB4	AB5	AB6	AB7	AB8			
0	557	542	502	537	513	602	641	582			
	1.49	1.44	1.39	1.32	1.21	1.51	1.36	1.23			
6	883	912	829	816	722	949	823	672			
	1.78	1.63	1.59	1.49	1.31	2.03	1.83	1.54			
8	952	933	898	881	732	927	847	732			
	1.81	1.72	1.67	1.58	1.36	2.12	1.83	1.52			
10	965	857	843	952	779	853	782	630			
	1.98	1.94	1.53	1.53	1.33	2.43	1.99	1.61			
12	919	965	879	819	740	849	776	675			
	2.04	1.90	1.72	1.69	1.40	2.43	2.01	1.57			
14	924	943	758	789	789	812	772	612			
	2.16	1.92	1.95	1.72	1.40	2.20	1.99	1.66			
16	937	898	968	887	739	997	774	636			
	2.23	1.99	1.82	1.72	1.44	2.30	2.31	1.72			
24	797	852	795	782	759	763	694	632			
	2.38	2.16	2.04	1.84	1.46	2.67	2.27	1.76			

T-1-1- CO	CEC data familia and a d				.	1	000 6-1-1
i able 58.	SEC data for the aminor	ysis ot poly	/mer АВІ то АВХ а	τ pH & using	an <i>n</i> -buty	lamine excess of 20,	υυυ-τοια.

Aminolysis Reactions with a [BuNH2]:[COOH] ratios of 278:1 and 556:1

AB diblock copolymers **AB2** to **AB8** were once again subjected to aminolysis reactions with an initial concentration of 0.5 wt%. This time, the ratio of *n*-butylamine to carboxylic functionality on the A blocks was maintained at approximately 278:1 for all polymers. SEC was used to monitor the molecular weight growth over 24 hours. The changes in molecular weight and dispersity for polymers **AB2** to **AB8** is detailed in Table 9.

Reaction Time (hour)	M _{n,SEC} (×10 ³) / Đ							
	AB2	AB3	AB4	AB5	AB6	AB7	AB8	
0	542	502	537	513	602	641	582	
	1.44	1.39	1.32	1.21	1.51	1.36	1.23	
6	999	1,050	1,050	862	1,370	1,020	955	
	1.71	1.73	1.59	1.36	1.95	2.05	1.50	
24	1,170	966	1,110	967	1,060	1,030	867	
	1.99	2.18	1.85	1.53	3.09	2.36	1.93	

Molecular weight and dispersity data were determined using aqueous SEC calibrated with PAA standards.

Lastly, AB diblock copolymers AB6 to AB8 were subjected to another set of aminolysis reactions at 0.5 wt% and a [BuNH₂]:[COOH] ratio of 556:1. SEC was used to monitor the molecular weight growth over 24 hours. The changes in molecular weight and dispersity for polymers AB6 to AB8 is detailed in Table 10.

Reaction Time	M _{n,SEC} (×10 ³) / Đ					
(hour)	AB6	AB7	AB8			
0	602	641	582			
	1.51	1.36	1.23			
2	1,170	866	745			
	1.59	1.60	1.24			
4	1,360	1,210	836			
	1.70	1.49	1.27			
6	1,440	1,340	872			
	1.83	1.54	1.29			
24	1,600	1,250	1,000			
	2.15	1.80	1.46			

Table S10. SEC data for the aminolysis of polymer AB6 to AB8 at 0.5 wt% using an [BuNH₂]:[COOH] ratio of 556:1.

SEC Chromatograms of A Block Polymers, AB Diblock and ABA Triblock Copolymers

The overlays of SEC traces for the A blocks (A2 to A8), their corresponding AB diblock copolymers (AB2 to AB8) and ABA triblock copolymers (ABA2 to ABA8) are shown in Figure 5 to Figure 11.

Figure S5. Overlay of SEC chromatograms for polymers A2, AB2 and ABA2.

Figure S6. Overlay of SEC chromatograms for polymers A3, AB3 and ABA3.

Figure S7. Overlay of SEC chromatograms for polymers A4, AB4 and ABA4.

Figure S8. Overlay of SEC chromatograms for polymers A5, AB5 and ABA5.

Figure S9. Overlay of SEC chromatograms for polymers A6, AB6 and ABA6.

Figure S10. Overlay of SEC chromatograms for polymers A7, AB7 and ABA7.

Figure S11. Overlay of SEC chromatograms for polymers A8, AB8 and ABA8.