Electronic Supplementary Information (ESI)

Microwave-assisted synthesis of glycopolymers by ring-opening metathesis polymerization (ROMP) in an emulsion system

Fei Fan,^{a,c} Chao Cai,^{*a,b,c} Lei Gao,^{a,c} Jun Li,^{a,c} Ping Zhang,^{a,c} Guoyun Li,^{a,b,c} Chunxia Li,^{a,b,c} and Guangli Yu^{*a,b,c}

 ^a Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China. E-mail: caic@ouc.edu.cn (CC), glyu@ouc.edu.cn (GY).
^b Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
^c Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Oingdao 266003, China. **Table of Contents:**

- 1. NMR data for glycomonomers.
- 2. The features of polymerization for glycomonomer 5 with H-G 2nd as catalyst.
- 3. The specific refractive index increment (dn/dc) determination.
- 4. Synthetic routes of homoglycopolymers and mult-block glycopolymers.
- 5. NMR spectra.
- 6. The size-exclusion chromatography (SEC) spectra.
- 7. Surface Plasmon Resonance measurements.

1. NMR data for glycomonomers.

Table S1. ¹H and ¹³C NMR data for glycomonomers (5, 10, 14).

Atom	5					10					14				
	$\delta_{\rm H}$	n _H	m.	J[Hz]	δ _C	$\delta_{\rm H}$	n _H	m.	J[Hz]	$\delta_{\rm C}$	$\delta_{\rm H}$	n _H	m.	J[Hz]	δ _C
1	6.32	2	s		137.59	6.25	2	s		127.00	6.33	2	s		137.61
					137.58					137.90					137.55
2	3.19	2	s		45.06	3.21	2	s		45.25	3.19	2	d	10.3	45.07
															45.06
3	1.44	1	d	9.8	42.20	1.43	1	d	8.8	42.86	1.45	1	d	9.8	42.21
	1.23	1	d	9.8		1.23	1	d	9.2		1.28	1	d	9.8	
4	2.76	2	d	0.8	47.66	2.72	2	s		47.91	2.77	2	s		47.68
															47.67
5	4.73	2	s		32.92	4.71	2	s		33.50	4.73	2	t	4.1	32.95
6	8.04	1	s		124.59	7.79	1	s		124.23	8.02	1	s		124.40
7	4.61	2	t	5.1	50.22	4.54	2	t	17.8	50.00	4.61	2	m		49.85
8	4.20	1	m		67.60	4.01	1	s		· 66.49	4.01	1	ddd	11.7, 7.7,	- 65.66
											4.01	1	uuu	4.3	
	3.98	1	dt	11.0,		3.82	1	d	10.9		3.79	1	dt	10.7, 4.0	
				5.0											
9	4.28	1	d	7.8	103.17	4.76	1	s		99.86	4.73	1	t	4.1	98.95
10	3.16	1	dd	9.0, 7.9	73.55	3.82	1	d	10.9	70.44	3.71	1	dd	10.0, 3.7	68.38
11	3.31	1	dt	3.1, 1.6	76.52	3.66	1	d	8.5	71.28	3.61	1	m		70.10
12	3.27	1	m		76.67 ^b	3.07	1	d	8.1	72.76	3.59	1	m		71.94
13	3.27	1	m		70.14 ^b	3.76	1	d	9.4	65.49	3.29	1	d	6.6	66.28
14	3.87	1	d	11.0		3.76	1	d	9.4						
	3.66	1	dd	11.9,	61.31	3.66	1	d	8.5	61.06	1.08	3	d	6.6	15.16
				5.3											
15					177.86					177.86					177.814
										177.83					177.805
16					141.85					141.91					142.01

^b might be interchanged

2. The features of polymerization for glycopmonomer 5 with H-G 2nd as catalyst.

Figure S1. (a) Reaction time of polymerization for [M]/[C] is 20 with H-G 2nd as catalyst under various reaction temperature (table 1, entries 6-11). (b) Monomer conversion of polymerization for various [M]/[C] ratio with H-G 2nd as catalyst under the reaction temperature 75 °C (table 1, entries 10, 11, 14-17). The black plot represents standard microwave heating, the red plot represents conventionally heating. (c) Different molecular weight (red) and polydispersity index (PDI, blue) polymerization with H-G 2nd as catalyst under different ratio of aqueous phase to organic phase.

3. The specific refractive index increment (dn/dc) determination.

Figure S2. The standard curve for the specific refractive index increment (dn/dc) determination.

4. Synthetic routes of homoglycopolymers and mult-block glycopolymers.

Scheme S1. Synthetic details of homoglycopolymers (*p*-Glu, *p*-Man, *p*-Fuc) and multi-block glycopolymers (*p*-Glu-*b*-Man, *p*- Glu-*b*-Fuc, *p*-Glu-*b*-Man-*b*-Fuc). The labels of atoms correspond with the labels of signals in figure 4.

Figure S4. ¹H NMR spectrum of compound 4.

Figure S5-2. ¹³C NMR spectrum of 1-azidoethyl-2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside.

Figure S7-2. ¹³C NMR spectrum of compound 12.

Figure S8-2. ¹³C NMR spectrum of monomer 5.

Figure S9-2. ¹³C NMR spectrum of monomer 10.

Figure S10-2. ¹³C NMR spectrum of monomer 14.

Figure S10-4. HSQC spectrum of monomer 14.

Figure S11. ¹H NMR spectrum of crude *p*-Glu (upper) and purified *p*-Glu (blow). The results showed that the degree of purity of glycopolymers had no influence on conversion assay based on the ¹H NMR integrations shifting from monomer olefin signals (6.36 ppm) to polymer olefin signals (5.3~5.9 ppm). Therefore, the crude glycopolymers in table 1 and table 2 were used for the conversion assay based on ¹H NMR apectrum.

Figure S12-1. ¹H NMR spectrum of *p*-Glu in table 1, entry 1.

Figure S12-3. ¹H NMR spectrum of *p*-Glu in table 1, entry 3.

Figure S12-5. ¹H NMR spectrum of *p*-Glu in table 1, entry 5.

Figure S12-7. ¹H NMR spectrum of *p*-Glu in table 1, entry 7.

Figure S12-9. ¹H NMR spectrum of *p*-Glu in table 1, entry 9.

Figure S12-11. ¹H NMR spectrum of *p*-Glu in table 1, entry 11.

Figure S12-13. ¹H NMR spectrum of *p*-Glu in table 1, entry 13.

Figure S12-15. ¹H NMR spectrum of *p*-Glu in table 1, entry 15.

Figure S12-17. ¹H NMR spectrum of *p*-Glu in table 1, entry 17.

Figure S12-19. ¹H NMR spectrum of *p*-Glu in table 1, entry 19.

Figure S12-21. ¹H NMR spectrum of *p*-Glu in table 1, entry 21.

Figure S12-23. ¹H NMR spectrum of *p*-Glu in table 2, entry 2.

Figure S12-25. ¹H NMR spectrum of *p*-Glu in table 2, entry 4.

Figure S12-27. ¹H NMR spectrum of *p*-Glu in table 2, entry 6.

Figure S12-29. ¹H NMR spectrum of *p*-Glu in table 2, entry 8.

Figure S12-35. ¹H NMR spectrum of *p*-Glu-*b*-Man-*b*-Fuc

6. The size-exclusion chromatography (SEC) spectra.

Figure S13. The size-exclusion chromatography (SEC) spectra of crude *p*-Glu (a), purified *p*-Glu (b), and glucose monomer (c). RI: refractive index singal, LS: light scattering singal, UV: ultraviolet singal.

The results showed that the degree of purity of glycopolymers had no influence on SEC analysis, therefore crude glycopolymers in table 1 and table 2 were used for SEC analysis. The monomer peak was eluted above 50 min which could be served as supplementary information of the conversion in SEC analysis.

Figure S14. The size-exclusion chromatography (SEC) spectra of glycopolymers in this paper. RI: refractive index singal, LS: light scattering singal.

7. Surface Plasmon Resonance measurements.

Figure S15. Surface plasmon resonance measurements for *p*-Fuc (a) and *p*-Glu-*b*-Fuc (b).

Figure S16. The equilibrium response as a function of concentration from *p*-Glu (a), *p*-Man (b), *p*-Glu-*b*-Man (c) and *p*-Glu-*b*-Man-*b*-Fuc (d) plotted using a steady state model.