Electronic Supplementary Information (ESI)

Synthesis of regioblock copolythiophene by Negishi catalyst-transfer polycondensation using ^tBu₂Zn·2LiCl

Eisuke Goto,^a Yuto Ochiai,^a Chen-Tsyr Lo,^a Tomoyuki Koganezawa,^b Mitsuru Ueda^a and Tomoya Higashihara*^a

^aDepartment of Organic Materials Science, Graduate School of Organic Materials

Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan

^bJapan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan

Corresponding Author

Tomoya Higashihara* (E-mail: thigashihara@yz.yamagata-u.ac.jp)

Table of contents

Synthesis	3
¹ H and ¹³ C NMR spectra	6
SEC UV traces	11
Schematic illustrations	14
In-plane 1D GIWAXS profiles	15
2D GISAXS patterns	16
1D GISAXS profiles	17
TGA curves	18
DSC curves	19
UV-vis absorption	20
Reference	21

Synthesis

Preparation of a THF solution of HH-monomer

Scheme S1. Synthesis of HH-monomer by zinc-iodine exchange reaction

Table S1. Synthesis of HH-monomer by zinc-iodine exchange reaction using

$^{t}Bu_{2}Zn \cdot 2LiCl$	under	varied	conditions
	unuur	variou	conditions.

Run	[^t Bu ₂ Zn·2LiCl]/[1] ^a	[LiCl]/[1] ^b	Conc. (M) ^c	Conv. (%) ^d
S1	1.0	0	0.0242	61
S2	2.0	0	0.0213	0
S3	1.0	3.0	0.0239	37
3	1.0	0	0.107	95

^{*a*} Initial molar ratio of ^{*t*}Bu₂Zn·2LiCl for **1**. ^{*b*} Initial molar ratio of LiCl for **1**. ^{*c*} Concentration (mol/L) of reaction mixture for synthesizing HH-monomer. ^{*d*} Conversion of zinc-iodine exchange reaction was evaluated by ¹H NMR spectroscopy.

Preparation of a THF solution of HT-monomer as the second monomer

Scheme S2. Synthesis of HT-monomer by zinc-iodine exchange reaction

2-Bromo-3-hexyl-5-iodothiophene (185 mg, 0.496 mmol) was placed in a 5 mL twonecked flask purged with N₂. After dissolving 2-bromo-3-hexyl-5-iodothiophene in dehydrated THF (5 mL), a 0.184 M THF solution of 'Bu₂Zn·2LiCl (2.7 mL, 0.50 mmol) was added and stirred at room temperature for 30 min to afford the HTmonomer.

Synthesis of regiorandom P3HT

Scheme S3. Synthesis of regiorandom P3HT

1 (112 mg, 0.207 mmol) and 2-bromo-3-hexyl-5-iodothiophene (154 mg, 0.413 mmol) were placed in a 20 mL two-necked flask purged with N₂. After dissolving them in dehydrated THF (2 mL), a 0.184 M THF solution of 'Bu₂Zn·2LiCl (3.4 mL, 0.62 mmol) was added at 0 °C and stirred at room temperature for 1 h. Then, the reaction mixture was diluted with 10 mL of dehydrated THF. The Ni catalyst (0.0092 mmol) solution (5 mL), which was prepared in another batch by mixing Ni(PPh₃)₂Cl₂ (6.0 mg, 0.0092 mmol) and dcpe (9.7 mg, 0.023 mmol) in THF (5 mL), was added to start the polymerization. The polymerization was carried out at 60 °C for 30 min, followed by quenching with 5 M HCl aq. (2 mL). The quenched solution was extracted with chloroform, washed with water, and analyzed by SEC directly before precipitation. The crude solution was poured into a large amount of methanol/water (200 mL/100 mL) to precipitate the polymer. After filtrating and drying under

vacuum, the crude HHTT-P3HT was obtained as a dark red solid (91 mg, 66%). SEC: *M*_n = 11,200, *M*_w/*M*_n = 1.46. ¹H NMR (400 MHz, chloroform-*d*): δ 7.10-6.91 (m, 1H), 2.88-2.68 (m, 1H), 2.66-2.42 (m, 1H), 1.78-1.50 (m, 2H), 1.49-1.15 (m, 6H), 0.99-0.80 (m, 3H). ¹³C NMR (101 MHz, chloroform-*d*) δ 143.52, 143.00, 140.44, 140.02, 139.92, 137.11, 136.91, 135.82, 134.96, 133.89, 130.76, 130.62, 130.52, 129.75, 128.73, 128.44, 127.52, 127.28, 126.69, 125.94, 125.26, 31.99, 30.83, 30.66, 29.61, 29.41, 29.29, 22.93, 22.75, 14.27.

¹H and ¹³C NMR spectra

Figure S1. (a) ¹H NMR and (b) ¹³C NMR spectra of HHTT-P3HT (Run 4).

Figure S2. (a) ¹H NMR and (b) ¹³C NMR spectra of regioblock P3HT (HHTT₂₅HT₇₅,

Run 6).

Figure S3. (a) ¹H NMR and (b) ¹³C NMR spectra of regioblock P3HT (HHTT₄₂HT₅₈,

Run 7).

Figure S4. (a) ¹H NMR and (b) ¹³C NMR spectra of regioblock P3HT (HHTT₆₉HT₃₁,

Run

8).

Figure S5. (a) ¹H NMR and (b) ¹³C NMR spectra of regiorandom P3HT.

SEC UV traces of HHTT-P3HT and regioblock P3HT

Figure S6. SEC UV traces of HHTT-P3HTs with (a) different ligands (Runs 1, 2 and

4) and (b) different [1]/Ni(PPh₃)₂Cl₂ (Runs 3-5).

Figure S7. SEC UV traces of HHTT-P3HT (1st block, orange) and regioblock P3HT (HHTT₂₅HT₇₅, Run 6, black) after the successive addition of the HT-monomer (2^{nd} block).

Figure S8. SEC UV traces of HHTT-P3HT (1^{st} block, orange) and regioblock P3HT (HHTT₆₉HT₃₁, Run 8, black) after the successive addition of the HT-monomer (2^{nd} block).

Figure S9. Schematic illustrations of plausible structures/mechanisms for (a) successful and (b) unsuccessful monomer addition sequences in NCTP and (c) unsuccessful and (d) successful monomer addition sequences in the conventional KCTP¹ for the synthesis of regioblock copolythiophenes.

In-plane 1D GIWAXS profiles

Figure S10. In-plane 1D GIWAXS profiles of HT-P3HT, $HHTT_{25}HT_{75}$, $HHTT_{42}HT_{58}$, $HHTT_{69}HT_{31}$ and HHTT-P3HT. All of the films were spin-casted on a Si wafer and

annealed at 150 °C for 1 h under vacuum.

2D GISAXS patterns

Figure S11. 2D GISAXS patterns of (a) HT-P3HT, (b) $HHTT_{25}HT_{75}$, (c) $HHTT_{42}HT_{58}$, (d) $HHTT_{69}HT_{31}$ and (e) HHTT-P3HT. All of the films were spin-casted on a Si wafer and annealed at 150 °C for 1 h under vacuum.

Temperature dependency of in-plane 1D GISAXS profiles

Figure S12. Temperature dependency of in-plane 1D GISAXS profiles of regioblock P3HT (HHTT₄₂HT₅₈, Run 7). The film was spin-casted on a Si wafer and heated up and cooled down gradually.

TGA thermograms

Figure S13. TGA curves of HT-P3HT, HHTT $_{25}$ HT $_{75}$, HHTT $_{42}$ HT $_{58}$, HHTT $_{69}$ HT $_{31}$

and HHTT-P3HT at the heating scan rate of 10 °C/min in N_2 .

DSC thermograms

Figure S14. DSC curves at the 2^{nd} cycle heating and 2^{nd} cycle cooling scans of HT-P3HT, HHTT₂₅HT₇₅, HHTT₄₂HT₅₈, HHTT₆₉HT₃₁ and HHTT-P3HT at the heating and cooling rate of 10 °C/min in N₂.

Table S2. Thermal properties of HT-P3HT, HHTT-P3HT and regioblock P3HTsmeasured by TGA and DSC.

	T _{d5%} (°C) ^a	$T_{\rm m}$ (°C) ^b	$\Delta H_{\rm m} ({\rm J}/{\rm g})^c$	<i>T</i> _c (°C) ^{<i>b</i>}	$\Delta H_{\rm c} ({\rm J/g})^c$	X_{c}^{d}	
НТ-РЗНТ	456	233.4	19.7	199.2	17.3	59.7	
HHTT ₂₅ HT ₇₅	448	213.8	12.5	172.8	10.5	37.9	
HHTT ₄₂ HT ₅₈	450	201.6	8.57	163.9	4.98	26.0	
HHTT ₆₉ HT ₃₁	434	160.4	2.74	107.9	2.40	8.30	
ННТТ-РЗНТ	432	-	-	-	-	-	

^{*a*} The 5% weight-loss temperatures were evaluated by TGA at 10 °C/min in N₂. ^{*b*} The melting and crystallizing temperature were evaluated by DSC at 10 °C/min in N₂. ^{*c*} The melting and crystallizing enthalpies were evaluated from the integrated peaks of DSC. ^{*d*} Crystallinities were calculated from the comparison between evaluated ΔH_m and an ideal melting enthalpy (33 J/g)².

UV-vis absorption

Figure S15. UV-vis absorption spectra of HT-P3HT, $HHTT_{25}HT_{75}$, $HHTT_{42}HT_{58}$, $HHTT_{69}HT_{31}$ and HHTT-P3HT (a) dissolved in chloroform and (b) drop-casted from chloroform and annealed at 150 °C at 1 h under vacuum.

Reference

- X. Li, P. J. Wolanin, L. R. Macfarlane, R. L. Harniman, J. Qian, O. E. C. Gould,
 T. G. Dane, J. Rudin, M. J. Cryan, T. Schmaltz, H. Frauenrath, M. A. Winnik,
 C. F. J. Faul and I. Manners, *Nat. Commun.*, 2017, 8, 15909.
- J. Balko, R. H. Lohwasser, M. Sommer, M. Thelakkat and T. Thurn-Albrecht,
 Macromolecules, 2013, 46, 9642–9651.