Supplementary Information for

# Rapid Copolymerization of Canola Oil Derived Epoxide Monomer with Anhydrides and Carbon Dioxide (CO<sub>2</sub>)

Liejiang Jin<sup>†</sup>, Hongbo Zeng<sup>‡</sup>, Aman Ullah<sup>†\*</sup>

<sup>†</sup>Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9

\*Author to whom correspondence should be addressed. Dr. Ullah, Email: ullah2@ualberta.ca

Summaries of Characteristic Signals from Spectroscopic Characterization:



| Entw  | Anhydrido | $COO(am^{-1})$ | $C = C (am^{-1})$ | C-O-C(cm <sup>-1</sup> ) | C-O-C(cm <sup>-1</sup> ) |
|-------|-----------|----------------|-------------------|--------------------------|--------------------------|
| Entry | Annyuride | -COO-(cm )     | -C-C-(cm )        | [ester]                  | [ether]                  |
| 1     | MA        | 1727           | 1644              | 1207, 1157               | -                        |
| 2     | SA        | 1734           | -                 | 1154                     | -                        |
| 3     | IA        | 1768, 1728     | 1653              | 1163                     | 1123                     |
| 4     | THPA      | 1730           | 1656(weak)        | 1181                     | 1112                     |
|       |           |                | 1599, 1580,       |                          |                          |
| 5     | PA        | 1723           | 1492,1459         | 1121,1066                | -                        |
|       |           |                | (phenyl)          |                          |                          |

Table S1. Characteristic IR absorption of epoxide/anhydride copolymers.

# <sup>1</sup>H NMR:

| Entry | Anhydride | -OCH-(ppm) | -OCH <sub>2</sub> -(ppm) | -OCHCH <sub>2</sub> O-(ppm) |
|-------|-----------|------------|--------------------------|-----------------------------|
| 1     | MA        | 5.13       | 4.61-4.06                | 3.98-3.21                   |
| 2     | SA        | 5.07       | 4.36-4.01                | 3.88-3.17                   |
| 3     | IA        | 5.09       | 4.20                     | 3.42                        |
| 4     | THPA      | 5.04       | 4.08                     | 3.62                        |
| 5     | PA        | 5.32       | 4.45                     | 3.90-3.20                   |

Table S2. <sup>1</sup>H NMR Ester/ether peaks of epoxide/anhydride copolymer.

# **Characterizations of DMC Catalyst:**



*Figure S1*. (a) ATR-FTIR spectra of DMC catalyst and K<sub>3</sub>Co(CN)<sub>6</sub>. (b) XRD patterns and proposed structure of DMC catalyst



Figure S2. XPS results of DMC catalyst.

**Profiles:** 



*Figure S3* (a) Heat effect of microwave energy on epoxide/CO<sub>2</sub> reaction. 112s, 276s, 367s and 518s was necessary to achieve  $60 \,^{\circ}$ C,  $70 \,^{\circ}$ C,  $80 \,^{\circ}$ C,  $90 \,^{\circ}$ C, respectively. (b) The temperature variation during microwave irradiated bulk polymerization of epoxide/MA.



Figure S4. The pressure variation during microwave irradiated copolymerization of epoxide/CO<sub>2</sub>.

Investigation of Copolymerization of  $CO_2$  and Epoxide under Various Conditions:

**Pressure:** 

| Entry | Pressure(psi) | Conv (%) | Carbonate (%) | Mw <sup>a</sup> (kda) | PDI <sup>a</sup> | TON <sup>b</sup> | TOF <sup>c</sup> |
|-------|---------------|----------|---------------|-----------------------|------------------|------------------|------------------|
| 1     | 76            | 91       | 18.3          | 10.381                | 1.38             | 640              | 3200             |
| 2     | 78            | 93       | 18.8          | 11.902                | 1.43             | 655              | 3275             |
| 3     | 82            | 88       | 34.7          | 11.249                | 1.87             | 620              | 3100             |
| 4     | 130           | 92       | 47.9          | 11.185                | 1.47             | 648              | 3240             |

*Table S3.* Microwave assisted copolymerization of 1,2-epoxydecane/ $CO_2$  at 70°C for 12 min. a: Molecular weight was identified by GPC. b: Turn over number (TON) was defined as (moles of converted epoxide monomer/ moles of Zinc). c: Turn over frequency (TOF) = TON per hour. Similarly, the calculation of TONs and TOFs were also applied for the experiments recorded in the following tables.

| Entry          | Time(min) | Conv (%) | CC <sup>a</sup> (%) | Mw (kDa) | PDI  | TON | TOF  |
|----------------|-----------|----------|---------------------|----------|------|-----|------|
| 1              | 6         | 92       | 2                   | 10.1     | 1.69 | 648 | 6480 |
| 2              | 9         | 94       | 2                   | 9.0      | 1.61 | 662 | 4413 |
| 3              | 12        | 93       | 2                   | 11.9     | 1.43 | 655 | 3275 |
| 4              | 15        | 91       | 3                   | 10.5     | 1.91 | 640 | 2560 |
| 5              | 27        | 98       | 3                   | 8.8      | 1.54 | 690 | 1533 |
| 6              | 30        | >99      | 11                  | 7.3      | 1.75 | 697 | 1394 |
| 7 <sup>b</sup> | 2 h       | -        | -                   | -        | -    | -   | -    |

Time:

*Table S4.* Microwave assisted copolymerization of 1,2-epoxydecane/CO<sub>2</sub> at 70°C for different time. a: percentage of cyclic carbonate estimated by <sup>1</sup>H NMR. b: no copolymer was observed after 2 h microwave-assisted reaction of epoxide/CO2 without DMC catalyst.

## **Temperature:**

| Entry | T(°C) | Conv (%) | Carbonate (%) | CC <sup>a</sup> (%) | Mw (kDa) | PDI  | TON | TOF  |
|-------|-------|----------|---------------|---------------------|----------|------|-----|------|
| 1     | 60    | 55       | 80.6          | <1                  | 14.2     | 1.44 | 387 | 774  |
| 2     | 70    | 99       | 35.3          | 11                  | 7.3      | 1.75 | 697 | 1394 |
| 3     | 80    | 97       | 32.3          | 6                   | 7.8      | 1.84 | 683 | 1366 |
| 4     | 90    | 95       | 18.6          | 3                   | 8.5      | 1.74 | 669 | 1338 |
| 5     | 100   | 94       | 22.3          | 1                   | 9.2      | 1.68 | 662 | 1324 |

*Table S5.* Microwave assisted copolymerization of 1,2-epoxydecane/ $CO_2$  for 30 min. a: percentages of cyclic carbonate (CC%) were estimated by <sup>1</sup>H NMR of crude products.

### Solvents:

| Entry | Solv   | Conv (%) | Carbonate (%) | Mw (kDa) | PDI  | TON | TOF  |
|-------|--------|----------|---------------|----------|------|-----|------|
| 1     | Hexane | 52       | 87.7          | 15.2     | 1.30 | 366 | 732  |
| 2     | THF    | 97       | 19.4          | 9.3      | 1.53 | 683 | 1366 |

Table S6. Microwave assisted copolymerization of 1,2-epoxydecane/CO<sub>2</sub> at 70°C for 30 min in different solvent.

# Investigation of Copolymerization of Anhydrides and Epoxide under Various Conditions:

| Entry          | T(°C) | Time (min) | Conv <sup>b</sup> (%) | Ester (%) | Mw (kDa) | PDI  | TON | TOF  |
|----------------|-------|------------|-----------------------|-----------|----------|------|-----|------|
| 1              | 90    | 10         | -                     | -         | -        | -    | -   | -    |
| 2              | 80    | 20         | 100                   | 82.3      | 8.151    | 1.23 | 704 | 2112 |
| 3              | 90    | 20         | 100                   | 92.3      | 8.692    | 1.27 | 704 | 2112 |
| 4              | 100   | 10         | 100                   | 91.1      | 8.212    | 1.28 | 704 | 4224 |
| 5              | 110   | 10         | 100                   | 85.9      | 10.659   | 1.57 | 704 | 4224 |
| 6 <sup>a</sup> | 110   | 20         | -                     | -         | -        | -    | -   | -    |
| 7°             | 90    | 5h         | 100                   | 75.0      | 6.013    | 1.52 | 704 | 141  |
| 8 <sup>d</sup> | 80    | 1 <b>h</b> | -                     | -         | -        | -    | -   | -    |

#### **Temperature:**

*Table S7.* Copolymerization of 1,2-epoxydecane/MA. a: insoluble polymer was obtained. b: the conversion was determined by the epoxide residue measured by <sup>1</sup>H NMR. c: the experiment was performed under conventional heating condition. d: the experiment was performed without DMC catalyst and no copolymer was observed after 1 h microwave-assisted reaction.

## **Catalyst Loading:**

| Entry | <b>DMC</b> loading | Time (min) | Conv (%) | Ester (%) | Mw (kDa) | PDI  | TON  | TOF  |
|-------|--------------------|------------|----------|-----------|----------|------|------|------|
| 1     | 0.3mg              | 20         | 100      | 87.7      | 6.311    | 1.32 | 1408 | 4224 |
| 2     | 0.6mg              | 10         | 100      | 91.1      | 8.212    | 1.28 | 704  | 4224 |
| 3     | 0.9mg              | 10         | 100      | 90.5      | 8.421    | 1.25 | 469  | 2814 |

Table S8. Copolymerization of 1,2-epoxydecane/MA at 100°C.

# Solvents:

| Entry | Solv   | Ester (%) | Mw (kDa) | PDI  |
|-------|--------|-----------|----------|------|
| 1     | Hexane | 91.2      | 8.171    | 1.43 |
| 2     | THF    | 69.3      | 7.336    | 1.17 |

Table S9. Copolymerization of 1,2-epoxydecane/MA for 20 min at 100°C in different solvents.

## **Epoxy to Anhydride Ratio:**

| Entry | Epoxy: MA | Ester (%) | Mw (kDa) | PDI  |
|-------|-----------|-----------|----------|------|
| 1     | 1.0:1.4   | 70.8      | 6.922    | 1.31 |
| 2     | 1.0:1.8   | 67.5      | 6.731    | 1.28 |

*Table S10.* Copolymerization of 1,2-epoxydecane/MA for 10 min at 100°C.

# **Temperatures of Polymer Degradation:**

| Entry | Anhydride               | T <sub>5%</sub> (°C) | T <sub>10%</sub> (°C) | T <sub>20%</sub> (°C) | T <sub>50%</sub> (°C) |
|-------|-------------------------|----------------------|-----------------------|-----------------------|-----------------------|
| (a)   | MA                      | 308                  | 330                   | 348                   | 372                   |
| (b)   | SA                      | 289                  | 318                   | 342                   | 365                   |
| (c)   | IA                      | 282                  | 308                   | 334                   | 367                   |
| (d)   | PA                      | 276                  | 304                   | 321                   | 342                   |
| (e)   | Isomerization<br>of (a) | 204                  | 301                   | 337                   | 369                   |
| (f)   | THPA                    | 205                  | 257                   | 305                   | 353                   |

Table S11. Decomposition temperature (5%, 10%, 20%, 50% weight loss) for polyesters.

# **DSC** Characterization of copolymers:



*Figure S5.* DSC curves(Exo up) of polymer contains different percentage of carbonate linkage. (a) Carbonate% = 35.3% (Entry 2, Table S5). (b) Carbonate% = 19.4% (Entry 2, Table S6). (c) Carbonate% = 87.7% (Entry 1, Table S6).



*Figure S6.* DSC curves (Exo up) of polyester using different anhydrides. The  $T_{gs}$  were determined by Universal Analysis 2000 Software automatically.