Supporting Information

Synthesis and Characterization of Amphiphilic Miktoarm Star Polymers Based on Sydnone-Maleimide Double Cycloaddition

Jing Zhang, Qingzhong Zhang, Shuaifeng Zhou, Yuping Liu, Wei Huang*

Department of Chemistry, School of Chemistry and Molecular Engineering, 500 Dongchuan Road, Shanghai 200241, People's Republic of China

*Corresponding Author

E-mail: whuang@chem.ecnu.edu.cn; Tel.: +86-21-54340104; Fax: +86-21-54340119.

Synthesis of furan-*N*-propargylmaleimide (7). A three-necked flask was charged with a mixture of maleimide 5.0 g (51.5 mmol) and diethyl ether 100 mL, and then furan 10.51 g (154.5 mmol) was added to the solution whilst stirring. The mixture was stirred at 95 °C for about 12 h under nitrogen. After removing the solvent under reduced pressure, the crude product was purified by silica gel chromatography to give the furan-maleimide 7.51 g. The obtained furan-maleimide (FM) 4.13 g (25.0 mmol) was dissolved in dried DMF 50 mL, and then propargyl bromide 8.85 g (75.0 mmol) and K₂CO₃ 3.45 g (25.0 mmol) were added to the solution. The mixture was stirred at 65 °C for 12 h under nitrogen. The insoluble powder was filtered and the solvent was removed under reduced pressure. The crude product was purified by silica gel chromatography to give the furan-*N*-propargylmaleimide (7) 4.61 g, 91 % yield. ¹H NMR (500MHz, CDCl₃, δ , ppm): 6.55 (t, J=0.9 Hz, 2H, CH=CH), 5.33 (t, J=0.9 Hz, 2H, CHOCH), 4.26 (d, J=2.5 Hz, 2H, NCH₂C), 2.93 (s, 2H, COCH(CH)CH(CH)CO), 2.22 (s, 1H, CCH).

Fig. S1 ¹H NMR spectra of MPEG_{1k}-*epoxide* (1a-1c) in CDCl₃.

Fig. S2 ¹H NMR spectra of MPEG- $(OH)(N_3)$ (2a-2c) in CDCl₃.

Fig. S3 ¹H NMR spectrum of furan-*N*-propargylmaleimide (7) in CDCl₃.

Fig. S4 IR spectra of 1a, 2a and 3a.

Fig. S5 ¹H NMR spectra of MPEG-(*OH*)(*FM*) (3a-3c) in CDCl₃.

Fig. S6 ¹H NMR spectra of MPEG-*b*-PCL(*MI*) (4a-4c) in CDCl₃.

Fig. S7 ¹H NMR spectra of (MPEG)₂(OH)₂ (5a-5c) in CDCl₃.

Fig. S8 GPC traces of MPEG_{1k}-epoxide (1a-1c), MPEG-b-PCL(MI) (4a-4c) and

(MPEG)₂(PCL)₂ (6a-6c) prepared by the "Coupling-onto" approach.

Fig. S9 GPC traces of MPEG_{1k}-epoxide (1a-1c), (MPEG)₂(OH)₂ (5a-5c) and (MPEG)₂(PCL)₂
(6d-6f) prepared by the "In-out" approach.

Fig. S10 GPC traces of MPEG_{1k}-*epoxide* (1a-1c) and (MPEG)₂(PCL)₂ (6g-6i) prepared by the "One-pot" approach.

Fig. S11 GPC traces of the crude (MPEG_{1k})₂(PCL_{2k})₂ (6a) prepared by various mole ratio of *N*-phenylsydnone to MPEG_{1k}-*b*-PCL_{2k}(*MI*): (a) 1:1, (b) 2:1, (c) 4:1.

Compond	Solvents ^b								
	DMF	DMAc	DMSO	CH ₂ Cl ₂	CHCl ₃	СН ₃ ОН	C ₂ H ₅ OH	EA	THF
<i>N</i> -phenyl- sydnone	++	++	++	++	++	++	++	++	++
	DEE	DIOX	IPA	Tolene	Acetone	Hexane	PE	СҮН	H ₂ O
	++	++	++	++	++	+	+	+	-

Table S1 Solubility of the *N*-phenylsydnone in various solvents^a

^a++: soluble; +: partially soluble; -: insoluble

^b Abbreviations: DMF, *N*,*N*-dimethylformamide; DMAc, *N*,*N*-dimethylacetamide; DMSO, dimethyl sulfoxide; EA, ethyl acetate; THF, tetrahydrofuran; DEE, diethyl ether; DIOX, 1,4-dioxane; IPA, isopropanol; PE, petroleum ether; CYH, cyclohexane.

No.	Sample	Yield (%)	M _{n,} ^a (KDa)	M ^b (KDa)	PDI ^b
3 a	MPEG _{1k} -(<i>OH</i>)(<i>FM</i>)	80	1.3	2.1	1.01
3 b	MPEG _{2k} -(<i>OH</i>)(<i>FM</i>)	87	2.3	2.7	1.01
3c	MPEG _{4k} -(<i>OH</i>)(<i>FM</i>)	85	4.3	4.1	1.05
4a	MPEG _{1k} -b-PCL _{2k} (MI)	95	3.6	3.1	1.19
4b	MPEG _{2k} -b-PCL _{1k} (MI)	96	3.6	3.3	1.17
4c	MPEG _{4k} -b-PCL _{4k} (MI)	98	8.1	7.7	1.23
5a	(MPEG _{1k}) ₂ (OH) ₂	88	2.5	2.8	1.08
5b	(MPEG _{2k}) ₂ (OH) ₂	90	4.5	4.0	1.06
5c	(MPEG _{4k}) ₂ (OH) ₂	85	8.5	6.9	1.12
6a	$(MPEG_{1k})_2(PCL_{2k})_2$	92	7.3	6.3	1.20
6b	$(MPEG_{2k})_2(PCL_{1k})_2$	91	7.3	6.2	1.18
6c	$(MPEG_{4k})_2(PCL_{4k})_2$	86	16.3	14.4	1.24
6d	$(MPEG_{1k})_2(PCL_{2k})_2$	95	7.2	6.1	1.35
6e	$(MPEG_{2k})_2(PCL_{1k})_2$	93	8.3	7.3	1.23
6f	$(MPEG_{4k})_2(PCL_{4k})_2$	87	16.9	14.0	1.33
6g	$(MPEG_{1k})_2(PCL_{2k})_2$	88	7.3	6.6	1.22
6h	$(MPEG_{2k})_2(PCL_{1k})_2$	92	8.1	6.4	1.20
6i	$(MPEG_{4k})_2(PCL_{4k})_2$	86	17.7	14.6	1.23
6j	$(MPEG_{2k})_2(PCL_{2k})_2$	90	9.3	8.2	1.26
6k	$(MPEG_{2k})_2(PCL_{5k})_2$	85	15.1	12.1	1.31

 Table S2
 The Characterization of synthesized polymers

^{*a*} Determined by ¹H NMR;

^b Determined by GPC in THF with calibrated PS standards at 35 °C.

No	Mole Ratio	Efficiency ^a	
	<i>N</i> -phenylsydnone: MPEG _{1k} - <i>b</i> -PCL _{2k} (<i>MI</i>)	(%)	
1	1:1	~85	
2	2:1	~94	
3	4:1	~100	

 Table S3 The efficiency of SMDC reaction under various mole ratio of reactants

^a Determined by ¹H NMR.