Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Aluminium-Catalyzed Terpolymerization of Furfuryl Glycidyl Ether with

Epichlorohydrin and Ethylene Oxide: Synthesis of Thermoreversible

Polyepichlorohydrin Elastomers with Furan/Maleimide Covalent Crosslinks

Ming Deng,^a Fang Guo,^{*a} Daohong Liao,^a Zhaomin Hou,^{a,b} and Yang Li^{*a}

^a State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering,

Dalian University of Technology, Dalian 116012, China

^b Organometallic Chemistry Laboratory and Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama

351-0198, Japan

Content

Table. S1 Copolymerization of Ethylene oxide (EO) and Epichlorohydrin (ECH) by <i>i</i> -Bu ₃ Al/H ₃ PO ₄ /DBU	3
Fig. S1 ¹³ C-NMR spectra of EO homopolymer, ECH homopolymer and ECH/EO copolymers having different contents	: ECH 3
Fig. S2 ¹³ C-NMR spectrum of homopoly(FGE)	4
Fig. S3 ¹³ C-NMR spectra of FGE/EO copolymers with different FGE contents (Table 1, runs 13, 14, 15)	4
Fig. S4 ¹³ C-NMR spectra of FGE/ECH copolymers with different FGE contents(Table 1, runs 10, 11, 12).	5
Fig. S5 ¹³ C-NMR spectra of FGE/ECH/EO terpolymers with different FGE contents	6
Fig. S6 Real-time monitored ¹ H-NMR spectra of the copolymerization of ECH and EO	7
Fig. S7 Real-time monitored ¹ H-NMR spectra of the copolymerization of EO and FGE	7
Fig. S8 Real-time monitored ¹ H-NMR spectra of the copolymerization of ECH and FGE	
Fig. S9 Compositional drift data of ECH/EO, EO/FGE, and ECH/FGE in copolymerization	
Fig. S10 FT-IR spectra of FGE/ECH/EO terpolymers with different FGE contents	9
Fig. S11 FT-IR spectra of a ECO/FGE ₂₀ /BMI ₁₀ terpolymer in the procedure of DA crosslinking at 70 °C and retroc linking at 150 °C9	cross-
Fig. S12 DSC curves of ECH/EO copolymers with different ECH contents	10
Fig. S13 DSC curve of a FGE homopolymer	10
Fig. S14 DSC curves of FGE/EO copolymers with different FGE contents	11
Fig. S15 DSC curves of FGE/ECH copolymers with different FGE contents	11
Fig. S16 DSC curves of FGE/ECH/EO terpolymers with different FGE contents (mole ratio of ECH/EO is 1/1).	12
Fig. S17 DSC curves of FGE/ECH/EO terpolymers with different FGE contents (mole ratio of ECH/EO is 1/4).	12
Fig. S18 GPC curves of a FGE/ECH copolymer, a FGE/EO copolymer and a ECH/EO copolymer.	13
Fig. S19 GPC curves of FGE/ECH/EO terpolymers	13
Fig. S20 Solubility evolution of ECO/FGE ₂₀ after DA and retro-DA process in CHCl ₂ CHCl ₂	14
Fig. S21 Thermal changes of DA crosslinked polyepichlorohydrin elastomers in DA and retro-DA process14	
Table. S2 Swelling tests data of DA cross-linked polyepichlorohydrin elastomers	14
Table. S3 Thermal properties of DA cross-linked polyepichlorohydrin elastomers	15
Fig. S22 DSC curve of DA crosslinked polyepichlorohydrin elastomer (DA_ECO/FGE ₅ /BMI _{2.5})	15
Fig. S23 TGA curves of DA crosslinked polyepichlorohydrin elastomers with different FGE contents	15
Fig. S24 Stress-strain curves of vulcanized_ECO/NA22 _n materials verify different crosslinked agents NA22	16
Table. S4 Mechanical properties of DA cross-linked and vulcanized polyepichlorohydrin elastomers 16	
Table. S5 Mechanical properties of recycles DA cross-linked polyepichlorohydrin elastomers	16

		hחחם	DBU ^b ECH ^b	EO ^b F	ГСГр	yield	composition ^c (mol%)		M_{n}^{d}	na Ina d	T_g^e	T _m e	
run	H3PU4 ²	DBO			FGE®	(%)	ECH	EO	FGE	(×10 ⁴)	<i>W</i> _w / <i>W</i> _n °	(°Č)	(°C)
1	0.35	0.26	32	8	0	100	80	20	0	11.4	1.64	-28	-
2	0.35	0.26	24	16	0	100	60	40	0	10.1	1.52	-36	-
3	0.35	0.26	16	24	0	100	40	60	0	8.7	1.54	-42	-
4	0.35	0.26	8	32	0	100	20	80	0	7.4	1.56	-46	47

Table. S1 Copolymerization of ethylene oxide (EO) and epichlorohydrin (ECH) by *i*-Bu₃Al/H₃PO₄/DBU^a

^{*a*} Reaction condition: *i*-Bu₃Al, 0.5 mmol; monomer concentration, 2 mol/L in toluene; reaction time, 0.5 h; 25 °C. ^{*b*} Molar ratio of *i*-Bu₃Al. ^{*c*} Determined by ¹³C-NMR. ^{*d*} Determined by GPC in 1,2,4 trichlorobenzene at 135 °C against polystyrene standard. ^{*e*} Determined by DSC.

Fig. S1 ¹³C-NMR spectra (100 MHz, $C_2D_2Cl_4$, r.t.) of a EO homopolymer, a ECH homopolymer and ECH/EO copolymers having different ECH contents prepared by *i*-Bu₃Al/H₃PO₄/DBU (Table 1, run 2, Table. S1, runs 1, 2, 4).

Fig. S2 ¹³C-NMR (100 MHz, C₂D₂Cl₄, r.t.) spectrum of homopoly(FGE) prepared by *i*-Bu₃Al/H₃PO₄/DBU (Table 1, run 9).

Fig. S3 ¹³C-NMR spectra (100 MHz, $C_2D_2CI_4$, r.t.) of FGE/EO copolymers with different FGE contents prepared by *i*-Bu₃Al/H₃PO₄/DBU (Table 1, runs 13–15).

Fig. S4 ¹³C-NMR spectra (100 MHz, $C_2D_2Cl_4$, r.t.) of FGE/ECH copolymers with different FGE contents prepared by *i*-Bu₃Al/H₃PO₄/DBU (Table 1, runs 10–12).

Fig. S5 ¹³C-NMR spectra (100 MHz, $C_2D_2Cl_4$, r.t.) of FGE/ECH/EO terpolymers with different composites prepared by *i*-Bu₃Al/H₃PO₄/DBU (Table 1, runs 19, 21, 26).

Fig. S6 ¹H-NMR spectra (500 MHz, toluene-d₈, 25°C) of the copolymerization ECH and EO. ECH resonances are shaded in pink, and EO resonances are shaded in yellow. Resonances associated with the copolymer are shaded in blue.

Fig. S7 ¹H-NMR spectra (500 MHz, toluene-d₈, 25°C) of the copolymerization EO and FGE. FGE resonances are shaded in pink, and EO resonances are shaded in yellow. Resonances associated with the copolymer are shaded in blue.

Fig. S8 ¹H-NMR spectra (500 MHz, toluene-d₈, 25°C) of the copolymerization ECH and FGE. FGE resonances are shaded in pink, and ECH resonances are shaded in yellow. Resonances associated with the copolymer are shaded in blue.

Fig. S9 Compositional drift data of (A) (=) ECH and (A) EO; (B) (=) FGE and (A) EO; (C) (=) ECH and (A) FGE.

Fig. S10 FT-IR spectra of FGE/ECH/EO terpolymers with different FGE contents prepared by *i*-Bu₃Al/H₃PO₄/DBU.

Fig. S11 FT-IR spectra of a ECO/FGE₂₀/BMI₁₀ terpolymer in the procedure of DA cross-linking (A) at 70 °C and retrocross-linking (B) at 150 °C.

Fig. S12 DSC curves of ECH/EO copolymers with different ECH contents prepared by *i*-Bu₃Al/H₃PO₄/DBU (Table 1, runs 2, Table.S1 run 1, 2, 4).

Fig. S13 DSC curve of a FGE homopolymer prepared by i-Bu₃Al/H₃PO₄/DBU (Table 1, run 9).

Fig. S14 DSC curves of FGE/EO copolymers with different FGE contents prepared by *i*-Bu₃Al/H₃PO₄/DBU (Table 1, runs 9, 13–15).

Fig. S15 DSC curves of FGE/ECH copolymers with different FGE contents prepared by *i*-Bu₃Al/H₃PO₄/DBU (Table 1, runs 9–12).

Fig. S16 DSC curves of FGE/ECH/EO terpolymers with different FGE contents (mole ratio of ECH/EO is 1/1) prepared by *i*-Bu₃Al/H₃PO₄/DBU (Table 1, runs 2, 9, 16, 17, 19, 20, 22).

Fig. S17 DSC curves of FGE/ECH/EO terpolymers with different FGE contents (mole ratio of ECH/EO is 1/4) prepared by *i*-Bu₃Al/H₃PO₄/DBU (Table 1, runs 9, 23, 24, Table. S1, run 4).

Fig. S18 GPC curves of a FGE/ECH copolymer, a FGE/EO copolymer and a ECH/EO copolymer prepared by *i*-Bu₃Al/H₃PO₄/DBU (Table 1, runs 2, 10, 13).

Fig. S19 GPC curves of FGE/ECH/EO terpolymers prepared by *i*-Bu₃Al/H₃PO₄/DBU (Table 1, runs 20–22).

Fig. S20 Solubility evolution of ECO/FGE₂₀ after DA and retro-DA process in CHCl₂CHCl₂ (20 mg polymer/mL).

Fig. S21 Thermal changes of DA cross-linked polyepichlorohydrin elastomers in DA and retro-DA process.

FGE content	Swelling ratio	Gel fraction	[XLD]s ^a	[XLD] _S ^b
mol%	%	%	(10 ⁻⁴ mol /g)	(10 ⁻⁴ mol /g)
1	339.1	93.8	1.3	1.4
2	312.2	94.9	1.5	2.8
3	280.6	95.1	3.2	4.2
5	143.6	96.6	4.5	6.9
8	113.0	96.5	6.2	9.0
10	91.7	97.4	8.1	13.0
20	49.1	91.6	15.3	23.5
50	17.8	79.4	34.3	45.5

 Table. S2 Swelling Tests Data of DA Cross-Linked Polyepichlorohydrin Elastomers.

^{*a*} Experimental value. ^{*b*} Theoretic value.

|--|

|--|

	(10 ⁻⁴ mol /g)		(°C)	(°C)	(°C)
Raw material	0	-39	281	316	333
DA_ECO/FGE ₅ /BMI _{2.5}	4.5	-37	305	328	343
DA_ECO/FGE ₁₀ /BMI ₅	8.1	-37	308	322	338
DA_ECO/FGE ₂₀ /BMI ₁₀	15.3	15	308	317	338
DA_ECO/FGE ₅₀ /BMI ₂₅	34.3	-	not determined	not determined	not determined
Vulcanized/Carbon ^b	3.7	-39	320	331	350

Fig. S22 DSC cruve of DA cross-linked polyepichlorohydrin elastomers (DA_ECO/FGE₅/BMI_{2.5}).

Fig. S23 TGA curves of DA cross-linked polyepichlorohydrin elastomers with different FGE contents.

Fig. S24 Stress-strain curves of Vulcanized_ECO/NA22_n materials verify different crosslinked agents NA22.

	Comula	M _n	[XLD] _s	$\sigma^{[c]}$	$\epsilon^{[d]}$	E ^[e]	ucíf
Run	Sample	(×10 ⁴ g/mol)	(×10 ⁻⁴ mol/g)	(MPa)	(%)	(MPa)	H201
1	ECO/NA22 ₀	9.3	0	1.0±0.3	644 ±80	0.1	35
2	ECO/FGE ₃	10.6	0	1.1±0.3	620 ±75	0.1	36
3	DA_ECO/FGE ₁ /BMI _{0.5}	9.7	1.2	7.3 ± 0.5	1221±86	0.7	44
4	$DA_ECO/FGE_2/BMI_1$	10.0	1.5	8.2±0.6	725 \pm 77	1.2	47
5	DA_ECO/FGE ₃ /BMI _{1.5}	10.6	3.2	15.0 ± 0.5	504 ± 73	2.1	70
6	DA_ECO/FGE ₄ /BMI ₂	11.1	3.8	12.6±0.8	350±82	3.2	73
7	DA_ECO/FGE ₅ /BMI _{2.5}	10.5	4.5	11.5±1.2	244 ± 56	3.7	74
8	DA_ECO/FGE ₈ /BMI ₄	10.8	6.3	12.5 ± 1.5	112±33	18.5	79
9	$DA_ECO/FGE_{10}/BMI_5$	12.5	8.1	11.1±1.5	58±20	25	83
10	DA_ECO/FGE ₂₀ /BMI ₁₀ ^a	12.7	15.3	-	-	_	95
11	Vulcanized_ECO/NA22 _{0.5}	9.3	0.6	3.6±0.2	1220±82	0.4	40
12	Vulcanized_ECO/NA22 _{0.8}	9.3	1.2	7.3±0.3	1423 ± 86	0.6	46
13	Vulcanized_ECO/NA22 _{1.0}	9.3	1.5	5.4 ± 0.4	853 ± 76	1.1	49
14	Vulcanized_ECO/NA22 _{1.5}	9.3	2.6	2.7±0.4	390±69	1.3	52
15	Vulcanized_ECO/NA22 _{2.0}	9.3	3.9	2.4±0.3	352 ± 46	1.3	53
16	Vulcanized /Carbon ^b	9.3	3.7	12.9±0.5	621±53	2.0	74

 Table. S4 Mechanical Properties of DA Cross-Linked and Vulcanized Polyepichlorohydrin Elastomers.

^{*a*} Samples were too brittle to give a measurable value. ^{*b*} Samples were vulcanized by 0.8 phr NA22 and reinforced by 40 phr carbon black. ^{*c*} σ represented ultimate stress. ^{*d*} ε represented elongations. ^{*e*}*E* represented Young's module. ^{*f*} HS represented Hardness (shore A).

 Table. S5 Mechanical Properties of reprocessed DA Cross-Linked Polyepichlorohydrin Elastomers.

Run	Samala	$\sigma^{[c]}$		E ^[e]	ucifi
	Sample	(MPa)	(%)	(MPa)	п 3 °,
1	Original	15.0±0.5	504 ± 73	2.1	70
2	1st Reprocessed	13.5 ± 0.7	455.8±69	2.0	70
3	2nd Reprocessed	14.6 ± 0.5	520.7 ± 63	2.1	70
4	3rd Reprocessed	13.1±0.8	493.7±78	2.0	70