Supporting Information

Photosensitive Poly(*o*-nitrobenzyloxycarbonyl-_L-lysine)-b-PEO Polypeptide Copolymers: Synthesis, Multiple Self-Assembly Behaviors, and the Photo/pH-

Thermo-Sensitive Hydrogels

Pan Li, Jiacheng Zhang, Chang-Ming Dong*

School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of

Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai

200240, P. R. China

Figure S1. ¹H NMR spectrum of oNB-Lys NCA in DMSO- d_6 (A) and its ¹³C NMR spectrum in CD₃CN (B) ("*" denotes the EtOAc solvent peaks).

Figure S2. GPC traces of the PEO-NH₂ and PNBL-b-PEO block copolymers.

Figure S3. FT-IR spectra of the PEO-NH₂ and PNBL-b-PEO block copolymers.

Figure S4. Photocleavage percentage of oNB group of PNBL₉-b-PEO in methanol solution (A) and in aqueous solution (B).

Figure S5. DLS-averaged diameter of PLys₉-b-PEO micelles as a function of pH.

(A) Thermo-sensitive hydrogel(B) pH-Sensitive hydrogelFigure S6. Digital images of thermo-sensitive hydrogels H2, H5 and H6 (A) and pH-sensitive hydrogels H5 and H6 (B).

Figure S7. Storage (G') and (G'') loss modulus as a function of strain for hydrogels H2, H5 and H6.

Figure S8. Dependence of UV cleavage time on the hydrogel mechanical properties.

Figure S9. DSC curves of PEO-NH₂, PNBL₉-b-PEO, hydrogel H2, H5 and H6 in the second heating run.

Figure S10. The relationship of the absorbance intensity of DPH as a function of copolymer concentration of PNBL₉-b-PEO (pH=7.5), PLys₉-b-PEO (pH=10) and PLys₉-b-PEO@ α -CD (pH=3) respectively.