Supporting Information for

A nonconjugated macromolecular luminogen for speedy, selective and sensitive detection of picric acid in water

Kamal Bauri,^{a,‡} Biswajit Saha,^{b,‡} Jnansankar Mahanti^b and Priyadarsi De*,^b

^aDepartment of Chemistry, Raghunathpur College, Purulia - 723133, West Bengal, India

^bPolymer Research Centre, Department of Chemical Sciences, Indian Institute of Science

Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India

* Corresponding Author: E-mail: p_de@iiserkol.ac.in

Fig. S1 ¹H NMR spectra of **PP** in $CDCl_3(A)$ and **DP** in acetone- $d_6(B)$.

Fig. S2 SEC RI traces of **PP** having two different molecular weights (26400 and 15700 g/mol).

Fig. S3 Fluorescence spectra of polymer at different concentrations in water.

Fig. S4 Fluorescence response of DP towards picric acid and different organic analytes.

Fig. S5 Fluorescence quenching of DP using 100 μ M PA.

Fig. S6 Plot of fluorescence intensity of DP versus picric acid concentration.

Fig. S7 Comparison of fluorescence response of **DP** towards picric acid with metal ions (A) and anions (B) in water.

Fig. S8 (A) Change in fluorescence spectra and (B) quenching percentage of fluorescence intensity of DP on exposure to PA vapour at different time intervals.

Fig. S9 ¹H NMR spectra of sensor **DP** (bottom), PA (middle) and a mixture of sensor DP and PA (top).

Fig. S10 UV-vis titration curves of sensor DP with DNP (A) and NP (B) in water.

Fig. S11 Stern-Volmer plot for 2,4-dinitrophenol.