Electronic Supplementary Information (ESI)

Gelatin based dynamic hydrogels via thiol-norbornene reactions

M. Mario Perera and Neil Ayres*

Address: Department of Chemistry, The University of Cincinnati, Cincinnati, OH 45221

*Corresponding Author: Phone +01 513 556 9280; Fax +01 513 556 9239; E-mail Neil.Ayres@UC.edu

Contents		Page
Figure S1	¹ H NMR spectrum of hydroxyethylpyridyl disulfide (HPDS).	S3
Figure S2	¹³ C NMR spectrum of HPDS.	S3
Figure S3	¹ H NMR spectrum of pyridyl disulfide ethylmethacrylate (PDSEMA).	S4
Figure S4	¹³ C NMR spectrum of PDSEMA.	S4
Figure S5	¹ H NMR spectrum of 2-hydroxypropyl methacrylate (HPMA).	S5
Figure S6	¹³ C NMR spectrum of HPMA.	S5
Figure S7	¹ H NMR spectrum of poly(HPMA ₇₇ -s-PDSEMA ₅).	S6
Figure S8	¹ H NMR spectrum of poly(HPMA ₅₇ - <i>s</i> -PDSEMA ₁₅).	S6
Figure S9	¹ H NMR spectrum of poly(HPMA ₇₇ -s-MEMA ₅).	S7
Figure S10	¹ H NMR spectrum of (a) pure gelatin, (b) Norbornene modified gelatin	S7
	(GelNB).	
Figure S11	(a) Standard calibration curve of ninhydrin test using glycine. (b) UV-	S8
	VIS absorbance curves for pure gelatin and GelNB.	
Figure S12	¹ H NMR spectrum of (a) poly(ethylene glycol) (PEG), (b) PEG-diNB.	S9
Figure S13	Log ₁₀ G' (storage moduli, closed symbols) and log ₁₀ G'' (loss moduli,	S9
	open symbols) of HG _{3:1} swollen in different concentration solutions of	
	2-mercaptoethanol in pH 8 PBS. Black: 2-mercaptoethanol, Blue: 0.1	
	M 2-mercaptoethanol, Red: 1 M 2-mercaptoethanol, Green: 2 M 2-	
	mercaptoethanol.	
Figure S14	$Log_{10}G'$ (storage moduli, closed symbols) and $log_{10}G''$ (loss moduli,	S10
	open symbols) of HG _{2:1} swollen in different concentration solutions of	
	2-mercaptoethanol in pH 8 PBS. Black: 2-mercaptoethanol, Blue: 0.1	
	M 2-mercaptoethanol, Red: 1 M 2-mercaptoethanol, Green: 2 M 2-	
	mercaptoethanol.	
Figure S15	Standard calibration curve of Ellman's assay using L-cystine.	S10
Figure S16	UV-VIS absorbance curves for poly(HPMA ₇₇ -s-MEMA ₅) and	S11
9	$\mathbf{r} = \mathbf{J} \left(\mathbf{v} + \mathbf{J} \right)$	

poly(HPMA ₅₇ -s-N	(IEMA ₁₅) using	Ellman's assay.
------------------------------	-----------------------------	-----------------

- Figure S17UV-VIS absorbance curves for hydrogel films made from poly(HPMA77-S11s-MEMA5before and after reducing disulfides to thiols.S11
- Figure S18UV-VIS absorbance curves for hydrogel films made from poly(HPMA57-S12s-MEMA15before and after reducing disulfides to thiols.
- Figure S19 $Log_{10}G'$ (storage moduli, closed symbols) and $log_{10}G''$ (loss moduli,
open symbols) of hydrogels after secondary crosslinking. (Triangles =
HG_{3:1}, Squares = HG_{2:1}, Green = 0.5:1 NB:thiol, Red = 1:1 NB:thiol
and Blue = 2:1 NB:thiol).S12
- Figure S20 Frequency (f) sweeps of the control hydrogels. $Log_{10}G'$ (storage S13 moduli, closed symbols) and $log_{10}G''$ (loss moduli, open symbols) of hydrogels.
- **Table S1**Formulations of the hydrogels.

Figure S1. ¹H NMR spectrum of hydroxyethylpyridyl disulfide (HPDS). (* Solvent- Ethyl acetate).

Figure S2. ¹³C NMR spectrum of HPDS.

Figure S3. ¹H NMR spectrum of pyridyl disulfide ethylmethacrylate (PDSEMA). (* indicates the ethyl acetate solvent).

Figure S4. ¹³C NMR spectrum of PDSEMA.

Figure S5. ¹H NMR spectrum of 2-hydroxypropyl methacrylate (HPMA).

Figure S6. ¹³C NMR spectrum of HPMA.

Figure S7. ¹H NMR spectrum of poly(HPMA₇₇-*s*-PDSEMA₅).

Figure S8. ¹H NMR spectrum of poly(HPMA₅₇-*s*-PDSEMA₁₅).

Figure S9. ¹H NMR spectrum of poly(HPMA₇₇-s-MEMA₅).

Figure S10. ¹H NMR spectrum of (a) pure gelatin, (b) Norbornene modified gelatin (GelNB).

Figure S11. (a) Standard calibration curve of ninhydrin test using glycine. (b) UV-VIS absorbance curves for pure gelatin and GelNB.

Figure S12. ¹H NMR spectrum of (a) poly(ethylene glycol) (PEG), (b) PEG-diNB.

Figure S13. $Log_{10}G'$ (storage moduli, closed symbols) and $log_{10}G''$ (loss moduli, open symbols) of $HG_{3:1}$ swollen in different concentration solutions of 2-mercaptoethanol in pH 8 PBS. Black: 2-mercaptoethanol, Blue: 0.1 M 2-mercaptoethanol, Red: 1 M 2-mercaptoethanol, Green: 2 M 2-mercaptoethanol. (*f*-Oscillation frequency).

Figure S14. $Log_{10}G'$ (storage moduli, closed symbols) and $log_{10}G''$ (loss moduli, open symbols) of $HG_{2:1}$ swollen in different concentration solutions of 2-mercaptoethanol in pH 8 PBS. Black: 2-mercaptoethanol, Blue: 0.1 M 2-mercaptoethanol, Red: 1 M 2-mercaptoethanol, Green: 2 M 2-mercaptoethanol. (*f*- Oscillation frequency).

Figure S15. Standard calibration curve of Ellman's assay using L-cystine.

Figure S16. UV-VIS absorbance curves for poly(HPMA₇₇-*s*-MEMA₅) and poly(HPMA₅₇-*s*-MEMA₁₅) using Ellman's assay.

Figure S17. UV-VIS absorbance curves for hydrogel films made from poly(HPMA₇₇-*s*-MEMA₅) before and after reducing disulfides to thiols.

Figure S18. UV-VIS absorbance curves for hydrogel films made from poly(HPMA₅₇-*s*-MEMA₁₅) before and after reducing disulfides to thiols.

Figure S19. $Log_{10}G'$ (storage moduli, closed symbols) and $log_{10}G''$ (loss moduli, open symbols) of hydrogels after secondary crosslinking using PEG-diNB as the secondary crosslinker. NB:Thiol- Norbornene (from PEG-diNB) to free thiol ratio. (*f*- Oscillation frequency).

Figure S20. Frequency (*f*) sweeps of the control hydrogels. $Log_{10}G'$ (storage moduli, closed symbols) and $log_{10}G''$ (loss moduli, open symbols) of hydrogels.

HG _{X:Y} ^a	Mass of	Mass of	Mass of	Mass of
	copolymer	GelNB/	PI ^{<i>b</i>} /	TCEP/
	(mg)	(mg)	(mg)	(mg)
$\mathrm{HG}_{1:1}^{c}$	100	500	6.0	18.0
$\mathrm{HG}_{2:1}{}^{c}$	200	500	7.0	36.0
$\mathrm{HG}_{3:1}^{c}$	300	500	8.0	54.0
$\mathrm{HG}_{3:1}^{d}$	100	500	6.0	54.0
$\mathrm{HG}_{6:1}^{d}$	200	500	7.0	100.0
$\mathrm{HG}_{9:1}^{d}$	300	500	8.0	150.0
$HG_{0:1}$	0.00	500	5.0	18.0
$\mathrm{HG}_{1:0}^{c}$	100	0.00	6.0	18.0
$\mathrm{HG}_{2:0}{}^{c}$	200	0.00	7.0	36.0
$\mathrm{HG}_{3:0}^{c}$	300	0.00	8.0	54.0

Table S1. Formulations of the hydrogels

^{*a*}HG= Hydrogel, X:Y= Thiol:ene ratio in the reaction mixture, ^{*b*}Photoinitiator (Irgacure 2959), ^{*c*}Hydrogels were made using Poly(HPMA₇₇-*s*-MEMA₅), ^{*d*}Hydrogels were made using Poly(HPMA₅₇-*s*-MEMA₁₅).