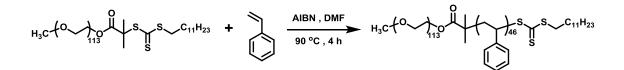
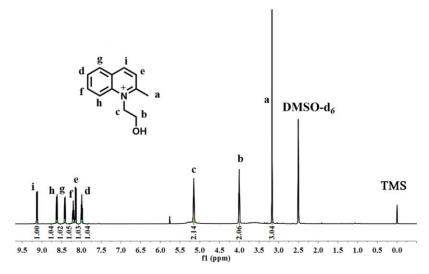

Electronic Supplementary Information


Selective visualization of endogenous hydrogen sulfide in

lysosomes via using aggregation induced emission dots


Peisheng Zhang,^a[‡] Yongxiang Hong,^{a,b}[‡] Hong Wang,^a Maolin Yu,^{a,b} Yong Gao,^{*,b} Rongjin Zeng,^{*,a} Yunfei Long^a and Jian Chen^{*,a}

Scheme S1. Synthesis route of compound 5

Scheme S2. Synthesis route of PEO₁₁₃-*b*-PS₄₆.

Figure S1 ¹H NMR spectrum (in DMSO-d₆) of the compound **1**.

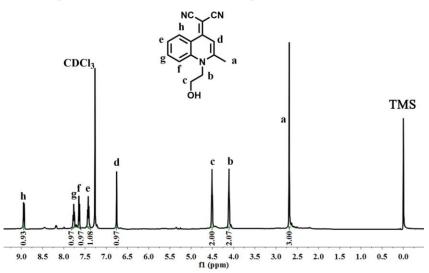


Figure S2 1 H NMR spectrum (in CDCl₃) of the compound 2.

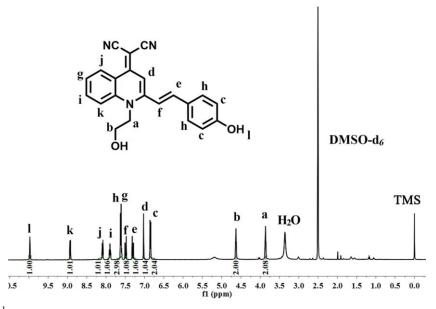


Figure S3 1 H NMR spectrum (in DMSO-d₆) of the compound 3.

Figure S4 ¹H NMR spectrum (in DMSO-d₆) of the compound **4**.

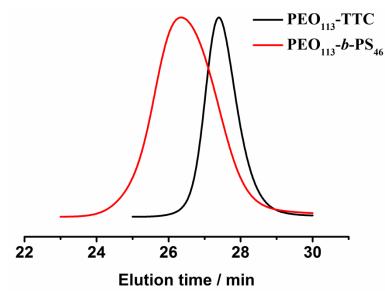


Figure S6. GPC trace of PEO₁₁₃-TTC and PEO₁₁₃-b-PS₄₆.

Table S1. Molecular weight distribution data of starting linear polymers

Sample	$M_{n,GPC}^{a}$	M _{w,GPC} ^a	PDI
PEO ₁₁₃ -TTC	8206	8699	1.06
PEO ₁₁₃ - <i>b</i> -PS ₄₆	13125	15380	1.17

^aThe data were acquired using SEC based on a polystyrene calibration curve and obtained from GPC analysis was using THF as eluent at a flow rate of 1.0 mL/min.

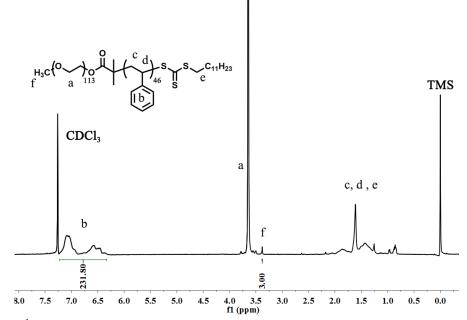
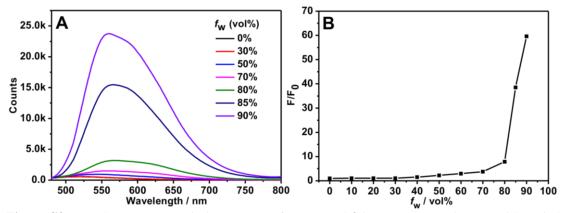



Figure S7. ¹H-NMR spectrum (in CDCl₃) of PEO₁₁₃-*b*-PS₄₆.

Figure S8. (A) Fluorescence emission spectra of compound **3** in water/THF mixtures with varied water fractions, $\lambda_{ex} = 435$ nm. (B) Compound **3** with f_w . F₀ and F are the PL intensities in THF ($f_w = 0$) and a THF/water mixture with a specific f_w , respectively.

.

Determination of fluorescence quantum yield of the compound 3

The quantum yield can be described as follows:

$$\Phi_U = \Phi_S \times \frac{F_U}{F_S} \times \frac{A_S}{A_U} \times \frac{(n_U)^2}{(n_S)^2}$$

Where Φ_s is the fluorescence quantum yield of the standard (rhodamine B in ethanol, 65%, 25 °C)^[1], F_U and F_S are the integral area of fluorescence intensity of the unknown sample and the standard at the same excitation wavelength, respectively; A_U and A_S are the absorbance of the unknown sample and the standard at the defined excitation wavelength, respectively; n_S and n_U are the refractive index at 25 °C of the solvent of standard (ethanol) and the unknown sample (mainly H₂O), respectively.

The Φ_U of compound 3 was calculated to be 2.8%.

[1]. R.F. Kubin, A.N. Fletcher, J. Lumin. 1982, 27, 455-462

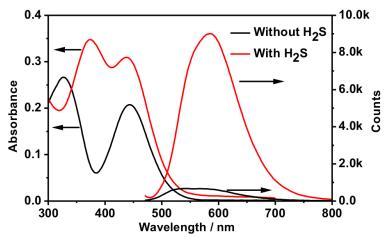


Figure S9. Absorbance and fluorescence spectra of AIED (10 μ g/mL) in pH 5.0 PBS buffered water without (black) and with (red) H₂S (80 μ M), $\lambda_{ex} = 435$ nm.

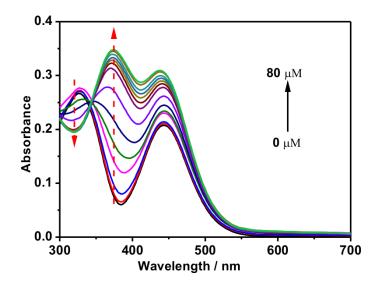


Figure S10. Absorbance spectra of AIED (10 μ g/mL) in pH 5.0 PBS buffered water under different concentration of H₂S (0~ 80 μ M).

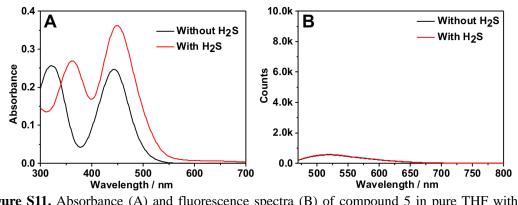
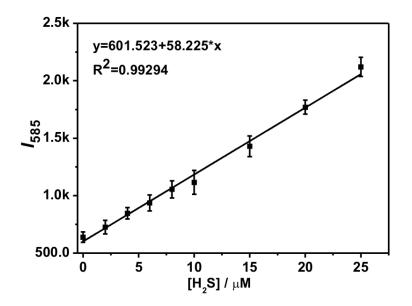
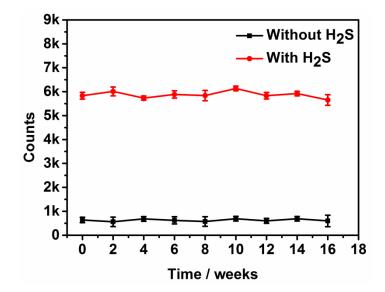
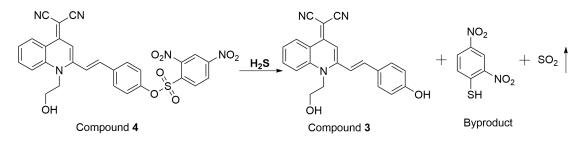



Figure S11. Absorbance (A) and fluorescence spectra (B) of compound 5 in pure THF without (black) and with (red) H_2S (80 μ M), $\lambda_{ex} = 435$ nm.

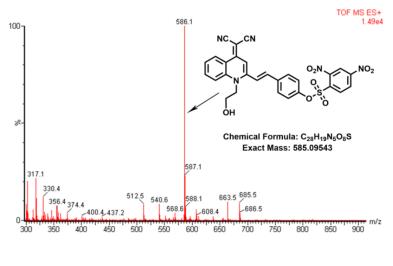
Figure S12. Linear relationship curve of fluorescence intensity at 585 nm (I_{585}) versus concentration of H₂S (0 ~ 25 μ M), $\lambda_{ex} = 435$ nm.

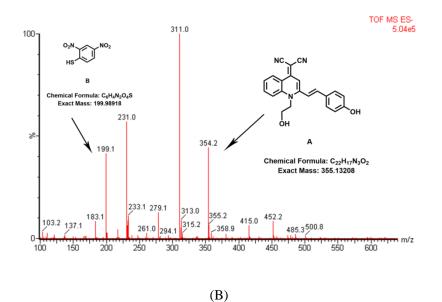

Determination of the detection limit:

First the calibration curve was obtained from the plot of fluorescence intensity (I_{585}) versus H₂S concentration. The regression curve equation was then obtained for the lower concentration part. The detection limit = 3 × S.D. / k


Where k is the slope of the curve equation, and S.D. represents the standard deviation for the fluorescence intensity (I_{585}) of **AIED** in the absence of H₂S.

 $I_{585} = 601.523 + 58.225 \times [H_2S] (R^2 = 0.9929)$


LOD = 3 \times 0.8494 /58.225 = 0.0438 μ M = 43.8 nM.


Figure S13. Fluorescence long-term photostability of **AIED** (10 µg/mL) at 585 nm (I_{585}) without and with H₂S (80 µM). $\lambda_{ex} = 435$ nm.

Scheme S3. Possible reaction mechanism of compound 4 with H₂S;

Figure S14. Mass spectra of compound **4** before (A) and after (B) addition H_2S . For A: the signals at m/z 586.1 are [(compound **4**)+H]⁺; For B: the signals at m/z 199.1, 231.0 and 354.2 are [(Byproduct)-H]⁻, [(Byproduct)+CH₃OH-H]⁻ and [(compound **3**)-H]⁻, respectively.

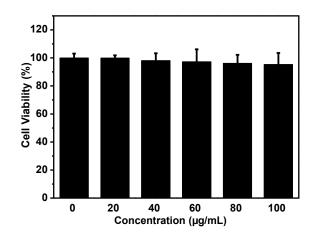


Figure S15. Viability for HeLa cells treated with the varied concentrations of AIED for 24 h.

Probes	Solution	Detection limit/nM	Stokes shift	AIE characteristics	Reference
HSN2-BG	PBS		109 nm	No	Anal. Chem., 2016,
					88, 5769-5774.
Lyso-HS	PBS buffer		120 nm	No	Anal. Chem., 2016,
	(pH 7.4, 1% DMSO)				88, 9213-9218.
SulpHensor	Buffer solution	25 nm	25 mm	No	Anal. Chem., 2014,
	(pH 4.5, 10% DMF,)		INO	86, 7508-7515.	
Lyso-NHS (pł	PBS buffer	490 M	105	No	Org. Lett., 2013,
	(pH 7.4, 10% CH ₃ CN)	480 nM	105 nm	No	15, 2310-2313
	HEPES buffer		100	NT-	RSC Adv., 2014,
Lyso-AFP	-AFP 109 nm (pH 7.4, 50% CH ₃ CN)	No	4, 25790-25794.		
1	CTAB 1.0 mM, CH ₃ CN /	790 nM	138 nm	No	Cham Commun 2014
	Tris-HCl = 3 : 7, pH =				Chem. Commun., 2014,
	7.4				50, 13833-13836.
TP-PMVC	PBS buffer		70 nm	No	Chem. Commun., 2016,
	(pH 4.4, 5% DMSO)				52, 7016-7019
AIED	PBS buffer (pH 5.0,)	43.8 nM	150 nm	Yes	This work

Table S2. Comparison of the recently reported H_2S fluorescent probes