Electronic Supplementary Information for

A simple, modular synthesis of bifunctional peptidepolynorbornenes for apoptosis induction and fluorescence imaging of cancer cells

Nan Xie,^a Ke Feng,^{*b} Jianqun Shao,^a Bin Chen,^b Chen-Ho Tung^b and Li-Zhu Wu^{*b}

^a School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China; ^b Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China.

E-mail Address: kefeng@mail.ipc.ac.cn, lzwu@mail.ipc.ac.cn.

Figure S1. UV-Vis absorption and normalized fluorescence spectra of NB-RhB (black) with the concentration of $3.42 \mu g/mL$ and PNB-KLA₁₅-*co*-TAT₁₀-*co*-RhB₅-*co*-PEG₇₀ (red) with the concentration of 0.109 mg/mL in 10 mM PBS buffer (pH 7.4).

Table S1 Comparison of GPC and DLS data for PNB-KLA _m -co-TAT _n -co-RhB _o -co-	PEG _p
random copolymers.	

Polymer	M _w ^a	Diam. ^b	MW-R ^b
	/kDa	/nm	/kDa
PNB-KLA ₅ -co-TAT ₁₀ -co-PEG ₈₅	117.0	9.9	143
PNB-KLA ₁₀ -co-TAT ₁₀ -co-PEG ₈₀	123.9	10.1	150
PNB-KLA ₁₅ -co-TAT ₁₀ -co-PEG ₇₅	120.6	9.9	142
PNB-KLA ₂₀ -co-TAT ₁₀ -co-PEG ₇₀	133.2	10.5	162
PNB-KLA ₁₅ -co-PEG ₈₅	89.9	9.3	122
NB-KLA ₁₅ -co-TAT ₁₀ -co-RhB ₅ -co-PEG ₇₀	115.8	9.6	132
PNB-TAT ₁₀ -co-RhB ₅ -co-PEG ₈₅	102.1	9.3	121
PNB-KLA ₁₅ -co-RhB ₅ -co-PEG ₈₀	90.2	8.9	109
PNB-TAT ₁₀ -co-PEG ₉₀	93.4	9.1	118

^aDetermined by GPC and measured in DMF with 25 mM LiBr at 313 K. ^bDetermined by DLS and measured in 10 mM PBS buffer (pH 7.4) with the concentration of 1.0 mg mL⁻¹ at 298 K.

Technical Institute of Physics and Chemistry Mass Spectrometry Sample Analysis Report

Figure S2. HR-ESI MS spectrum for NB-pKLA monomer.

Figure S3. ¹H NMR spectrum for NB-pKLA monomer in DMSO-*d*₆.

Technical Institute of Physics and Chemistry Mass Spectrometry Sample Analysis Report

Figure S4. HR-ESI MS spectrum for activated NB-KLA.

Figure S5. ¹H NMR spectrum for activated NB-KLA.

Figure S6. ¹H NMR spectrum for PNB-pKLA polymer in DMSO-*d*₆.

Figure S7. ¹H NMR spectrum for PNB-pKLA₁₅-*co*-pTAT₁₀-*co*-PEG₇₅ polymer in DMSO-*d*₆.

Figure S8. ¹H NMR spectrum for PNB-KLA₁₅-*co*-TAT₁₀-*co*-PEG₇₅ polymer in DMSO-*d*₆.

Figure S9. ¹H NMR spectrum for PNB-pKLA₁₅-*co*-pTAT₁₀-*co*-RhB₅-*co*-PEG₇₀ polymer in DMSO-*d*₆.

Figure S10. ¹H NMR spectrum for PNB-KLA₁₅-*co*-TAT₁₀-*co*-RhB₅-*co*-PEG₇₀ polymer in DMSO-*d*₆.