1	Supporting information for
2	Morphology control in polymerised high internal phase
3	emulsion templated via macro-RAFT agent
4	composition: Visualizing surface chemistry
5	
6 7	A. Khodabandeh, ^{a,b} R. D. Arrua, ^b B. R. Coad, ^{b,c} T. Rodemann, ^d T. Ohigashi, ^e N. Kosugi, ^e S. C. Thickett, ^f and E.F. Hilder ^{b*}
8 9 10 11 12 13 14 15 16 17 18 19	 ^a Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences, University of Tasmania, Tasmania, Australia ^b Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, GPO Box 2471, Adelaide SA 5001, Australia ^c School of Agriculture, Food and Wine, University of Adelaide, Adelaide SA 5005, Australia ^d Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart 7001, Australia ^e UVSOR Synchrotron, Institute for Molecular Science, 38 Nishi-gonaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan ^f School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart 7001, Australia
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	

37 Typical end-group removal process

To investigate this, the RAFT part of the macro-RAFT agents (See Table 1) were 38 39 cleaved using a typical protocol with minor modifications. Briefly, a mixture of macro-40 RAFT agent Qb-1 (0.2 g, 0.13 mmol), benzoyl peroxide (BPO) (0.5 g, 2.06 mmol), and toluene (6 g) was placed in a round-bottom flask, sealed, and degassed with argon gas 41 42 for 20 minutes. 2-Propanol was degassed with argon gas in a separate sealed round 43 bottom flask. The 2-propanol (6 g) was removed through a syringe equipped with a long 44 needle and injected to the mixture. The round-bottom flask containing the mixture was 45 then heated to 100 °C for 6 h. Completion of butyl-trithiocarbonate RAFT-end group 46 removal was determined by ¹H-NMR after evaporating the volatile solvents from the 47 product in a vacuum oven at 40 °C overnight. The 1H-NMR spectrum of the product 48 demonstrated the absence of signals associated with the butyl trithiocarbonate end group at 3.3 ppm (CH3-(CH2)2 -CH2-S-C(S)-S-) and 4.8 ppm (the first chain length of CH 49 50 oligomer backbone adjacent to the sulfur). Toluene and 2-propanol were then removed 51 through rotary evaporation under reduced pressure and all polymers were purified by precipitation in a cold methanol/water mixture (80/20 v/v %) to remove the unreacted 52 53 BPO.

54	Tab	le S1.	Elemental	l anal	ysis data
----	-----	--------	-----------	--------	-----------

Sample ID	N%	С%	Н%	S%
Bulk polymer	0.17	90.76	8.23	0.00
PolyHIPE A1	0.18	80.56	7.79	0.69
PolyHIPE A3	0.09	85.72	8.41	0.00

55

56 **Table S2.** RAFT synthesis of P(AA)-qb-P(Sty)

(AA) _x -qb-(Sty) _y	AA/	AA/ [Sty]/		Conversion		M _{n th} (g mol ⁻¹) ^{b,c}		M _{n, SEC}	Đe
	RAFT	[(AA) _x -	RAFT	First	Secon	First	Second	(g mol ⁻¹) ^e	
	(NMR) ^a	СТА	(NMR) ^a	Step	d Step	Step	Step		
Qb-1	6	5.9	6.8	98.3	57.3	663.2 ^b	1379.2 ^c	1291	1.19
Qb-2	3	5.8	1.5	98.1	50.0	450.0 ^b	762.9 ^c	1015	1.12
End group	6	-	-	98.3	57.3	663.2 ^b	1214.9 ^d	1245	1.19
removed-Qb-1									
End group	3	-	-	98.1	50.0	450.0 ^b	598.6 ^d	902	1.12
removed-Qb-2									

57 ^aDetermined by ¹H NMR in DMSO-d6 (internal reference, 1,3,5-trioxane). ^{b,c}The M_{n(theory)} was estimated using the

formula: ${}^{b}M_{n(theory)} = [([M]_{0}/[RAFT]_{0}) \times M_{monomer} \times conversion (%)] + M_{RAFT} and {}^{c}M_{n(theory)} = [([M]_{0}/[RAFT]_{0}) \times M_{monomer}$ s conversion (%)] + M_{n, macro-RAFT}; where M_{monomer} and M_{RAFT} are the molar masses of the corresponding monomer and RAFT agent, respectively, and [M]_{0} and [RAFT]_{0} are the initial concentrations of the corresponding monomer and RAFT agent, respectively. ${}^{d}M_{n(theory)} = [([M]_{0}/[RAFT]_{0}) \times M_{monomer} \times conversion (%)] + M_{n, macro-RAFT} - M_{th, RAFT-Z}$ ${}^{group} + 1 {}^{e}Molecular weight and polydispersity determined by SEC analysis (THF used as eluent). (More details of$

63 procedure are available in the experimental part). Calculated according to PSty standards.

64

65

66

68 **Fig. S1** A) Macro-RAFT agent Qb-1 B) Macro-RAFT agent Qb-2. C) 1HNMR spectra of

74 **Fig. S2** Phase separation after preparation of HIPE A4 formulation.

macro-RAFT agent Qb-1 (DMSO-d6).

76 Fig. S3 ATR-IR of bulk polymer (black line), polyHIPE A1 (red line), and polyHIPE A3 (blue line) (from bottom

77~ to top). The peak around 1650- 1850 cm-1 is highlighted.

- 78
- 79

- 81~ Fig. S4 EDX mapping analysis on polyHIPE A1; (A) SEM image and (B) Overall mapping elements on the
- $\begin{array}{ll} 82 & \text{same spot: corresponding to carbon (C), oxygen (D), calcium (E), and chloride (F) mapping. Scale bar is 10 \\ 83 & \mu\text{m}. \end{array}$

86 Fig. S5 TEM images of polyHIPEs: (a) polyHIPE A1 and (b) polyHIPE A3 embedded in epoxy. The zones are:

- $\,$ the epoxy embedding materials (1), the cross-linked polystyrene-DVB (2). The scale bar is 10 $\mu m.$

- $\,$ Fig. S6 STXM optical density (OD) images at different energies 280-320 eV (More than 80 images have
- $\,$ been collected. Three images with strong chemical contrasts were selected. The scale bar is 1 $\mu m.$

- 96 Fig. S7 STXM color coded composite map of polyHIPE A1 (red=epoxy, green=PSty, blue=macro-RAFT agent)
- 97 (10μm×10μm).