A fluorescent cross-linked supramolecular network formed by

orthogonal metal-coordination and host-guest interactions for

multiple ratiometric sensing

Luonan Xu,^{a,+} Dong Chen,^{a,+} Qian Zhang,^a Tian He,^a Chenjie Lu,^a Xi Shen,^a Danting Tang,^a Huayu Qiu,^a Mingming Zhang^{*b} and Shouchun Yin^{*a} ^aCollege of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China E-mail: <u>yinsc@hznu.edu.cn</u> Fax: +86 57128867899; Tel: +86 57128865310 ^bState Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China E-mail: mingming.zhang@xjtu.edu.cn. †These authors contributed equally to this work

Supporting Information (21 pages)

1.	Material and methods	S3
2.	Synthesis of compound H1	S4
	2.1 Synthesis of compound 3	S4
	2.2 Synthesis of compound 5	S6
	2.3 Synthesis of compound H1	S 8
3.	Synthesis of polymer P1	S10
	3.1 Synthesis of compound 7	S10
	3.2 Synthesis of compound 8	S12
	3.3 Synthesis of compound 9	S13
	3.4 Synthesis of polymer P1	S15

3.5 Synthesis of polymer P2	S16
4. UV/Vis absorbance spectra of complexation between H1 and $Zn(OTf)_2$	S17
5. COSY spectrum of supramolecular polymer	S18
6. ¹ <i>HNMR</i> spectra of concentration-dependent between P1 and H1 + Zn^{2+}	S18
7. Fluorescence emission spectra of P1, H1, P1+H1 and P1+H1+Z n^2	e^{+} at the
different concentrations	S19
8. Fluorescence spectra of H1 or terpyridine derivative solutions with	gradual
addition of Zn(OTf) ₂ , respectively	S19
9. Determination of the limit of detection of TBACl, Et_3N and cyclen	S20
10. Photographs and fluorescent graphs of self-healing supramolecular gel	S21
References	S21

1. Materials and methods

Compounds 1^{S1}, 2^{S1}, 4^{S2}, 6^{S2}, 7^{S3} and 9^{S3} were synthesized according to the published procedure. 1D (¹H, ¹³C) and 2D (DOSY, COSY) nuclear magnetic resonance (NMR) spectra were recorded at room temperature on a Bruker Avance 500 operating at a frequency of 500 MHz for ¹H and 125 MHz for ¹³C. High-resolution mass data were obtained with an Agilent Technologies 6530 Accurat-Mass Q-TOF LC/MC instrument. Molecular weight and molecular weight distribution of the polymer were estimated by gel permeation chromatography (GPC) using a Waters Associates liquid chromatography equipped with a Waters 510 HPLC pump, a Waters 486 wavelength-tunable UV–vis detector and a Waters 410 differential refractometer. The polymer solutions were prepared in THF (ca. 2.0 mg/mL) and filtered through 0.45-µm PTFE syringe-type filters before being injected into the GPC system. THF was used as the eluent at a flow rate of 1.0 mL/min. The column temperature was maintained at 30°C and the working wavelength of the UV–vis detector was set at 254 nm. A set of monodisperse polystyrene standards (Waters) was used for calibration purposes.

Viscosity measurements were carried out with Ubbelohde dilution viscometers (Julabo Technology Corporation visco-170, 0.47 mm inner diameter) in v/v) containing 0.05 mol/L tetrabutylammonium CHCl₃/CH₃CN (1/1,hexafluorophosphate to exclude the polyelectrolyte effect. Scanning electron microscopy (SEM) investigations were carried out on a Carl Zeiss Jena supra55 sapphire instrument. Rheological data were obtained by using a Physica MCR302 rheometer (Anton Paar) with cone-plate geometry (diameter of 25 mm, 2° cone, truncation height is 0.3 mm). Oscillatory frequency sweep experiments were performed from 0.1 rad/s to 100 rad/s with a strain in the linear region at 4 °C. UV/Vis absorption spectra were recorded on a Perkin Elmer Lambda 750 UV/Vis spectrophotometer. The fluorescence spectra were recorded on a HITACHI F7000 fluorescence spectrophotometer. The samples for fluorescent titration measurement were prepared as follows. The host solution and the guest solution ([H1] = 100 μ M and $[P1] = 18.6\mu M$ in CHCl₃/CH₃CN = 1:1) was first prepared. Then different concentrations of Zn^{2+} (0-22 μ M) were added into the solution of H1 and P1. The method for other detection was prepared as follows.

2. Synthesis of compound H1

Scheme S1 Synthetic routes of compound H1.

2.1. Synthesis of compound **3**

1 (364 mg, 1.00 mmol), 2 (283 mg, 1.00 mmol) and K₂CO₃ (1.38 g, 10.0 mmol) were dissolved in CH₃CN (30 mL) and then refluxed for 12 h. After filtration, the solvent was removed with a rotary evaporator and the residue was extracted with H₂O/CH₂Cl₂. The organic phase was collected, dried over anhydrous MgSO₄ and then the solvent was removed to give a crude product, which was further purified by flash column chromatography (1:1 CH₂Cl₂/hexane, ν/ν) to afford **3** as a pale yellow liquid (310 mg, 65.3%). ¹H NMR (500 MHz, CDCl₃, 298K) δ (ppm): 7.14–7.05 (m, J = 7.10 Hz, 10H), 6.98–6.89 (m, 4H), 6.68–6.64 (dd, $J_I = 15.7$ Hz, $J_2 = 8.7$ Hz, 2H), 6.59–6.54 (d, $J_I = 15.4$ Hz, $J_2 = 8.6$ Hz, 2H), 5.16 (s, 1H), 3.93–3.91 (m, 2H), 3.33–3.30 (td, $J_I = 6.8$ Hz, $J_2 = 1.8$ Hz, 2H), 1.82–1.78 (m, 2H), 1.70–1.67 (m, 2H), 1.59–1.54 (m, 2H).

¹³C NMR (125 MHz,CDCl₃, 298K) δ (ppm): 157.4, 154.1, 154.0, 144.3, 144.3, 139.8, 139.8, 139.7, 139.8, 136.6, 136.5, 132.8, 132.7, 132.6, 132.5, 131.5, 127.8, 127.7, 127.6, 126.3, 114.7, 114.6, 113.7, 113.6, 67.5, 51.4, 28.9, 28.7, 23.4. HRMS [M+Na]⁺: calcd. for C₃₁H₂₉N₃O₂Na 498.2152, found 498.2002.

Fig. S1 ¹H NMR spectrum (500 MHz, CDCl₃, 298K) of compound 3.

Fig. S2 ¹³C NMR spectrum (125 MHz, CDCl₃, 298K) of compound 3.

Fig. S3 HRMS spectrum of compound 3.

2.2. Synthesis of compound 5

3 (475 mg, 1.00 mmol), **4** (639 mg, 1.00 mmol) and K₂CO₃ (2.76 g, 20.0 mmol) were dissolved in CH₃CN (30 mL) and then refluxed for 12 h. After filtration, the solvent was removed with a rotary evaporator and the residue was extracted with H₂O/CH₂Cl₂. The organic phase was collected, dried over anhydrous MgSO₄ and then the solvent was removed to give a crude product, which was further purified by flash column chromatography (1:1 acetic ether/hexane, v/v) to afford **5** as a pale cyan liquid (580 mg, 56.0%). ¹H NMR (500 MHz, CDCl₃, 298K) δ (ppm): 7.09–7.02 (m,10H), 6.94–6.92 (m, 4H), 6.88–6.83 (m, 7H), 6.64–6.58 (m, 4H), 5.00 (s, 2H), 4.15 (s, 8H), 3.91 (m, 12H), 3.83 (s, 8H), 3.29 (s, 2H), 2.41–2.39 (d, *J* = 6.5 Hz, 2H), 1.80–1.78 (m, 6H), 1.66 (s, 2H), 1.54–1.53 (d, *J* = 6.9 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃, 298K) δ (ppm): 173.4, 157.5, 149.1, 149.1, 149.0, 144.4, 139.8, 132.6, 131.5, 129.2, 127.7, 126.3, 121.9, 121.6, 114.5, 114.2, 113.7, 113.6, 71.4, 70.1, 69.5, 67.5, 67.3, 66.3, 51.5,

34.1, 29.0, 28.9, 28.8, 23.5, 21.8. HRMS $[M+Na]^+$: calcd. for $C_{61}H_{69}N_3O_{12}Na$ 1058.4773, found 1058.3788.

Fig. S4 ¹H NMR spectrum (500 MHz, CDCl₃, 298K) of compound 5.

Fig. S5 ¹³CNMRspectrum (125 MHz, CDCl₃, 298K) of compound 5.

Fig. S6 HRMS spectrum of compound 5.

2.3. Synthesis of compound H1

A mixture of **5** (518 mg, 0.50 mmol), **6** (166 mg, 0.50 mmol), CuI (38 mg, 0.20 mmol), DIEA (51 mg, 0.40 mmol) in DCE/H₂O (1:1, 100 mL) was stirred at 50°C for 24 h. The solvent was removed with a rotary evaporator and the residue was extracted with H₂O/CH₂Cl₂. The organic phase was collected, dried over anhydrous MgSO₄ then purified by flash column chromatography(100:1 ethyl acetate/Et₃N, v/v) to afford the desired product **H1** as a yellow solid (290 mg, 43.3%). ¹H NMR spectrum (500 MHz, CDCl₃, 298K) δ (ppm): 8.81 (s,2H), 8.78–8.77 (d, J = 4.1 Hz, 4H), 7.98 (s, 2H), 7.95–7.94 (d, J = 8.5 Hz, 2H), 7.64–7.63 (s, 1H), 7.44 (s, 2H), 7.13–6.99 (m, 12H), 6.93–6.82 (m, 11H), 6.62–6.57 (m, 4H), 5.29 (s, 2H), 5.00 (s, 2H), 4.41–4.38 (t, J = 7.2 Hz, 2H), 4.14–4.13 (d, J = 4.5 Hz, 8H), 3.91–3.90 (d, J = 3.3 Hz, 8H), 3.87–3.86 (m, 4H), 3.82–3.82 (m, 8H), 2.40–2.37 (t, J = 6.9 Hz, 2H), 2.01–1.98 (m, 2H), 1.78–1.76 (m, 6H), 1.52–1.50 (m, 2H). ¹³C NMR (125 MHz, 1:1 CDCl₃/CD₃CN, 298K) δ (ppm): 172.2, 158.1, 156.3, 156.2, 155.2, 154.7, 148.6, 148.0, 147.9, 143.3, 143.2,

143.1, 142.9, 138.6, 136.0, 135.4, 135.3, 131.5, 130.3, 127.6, 126.6, 126.5, 125.1, 122.8, 121.6, 120.7, 120.4, 117.4, 114.2, 113.3, 113.0, 112.6, 112.5, 70.3, 70.2, 68.9, 68.8, 68.4, 68.3, 66.0, 65.1, 61.2, 49.3, 32.9, 29.0, 27.7, 27.8, 22.2, 20.6. HRMS $[M+H]^+$: calcd. for $C_{85}H_{87}N_6O_{13}$ 1399.6326, found 1399.6307.

Fig. S7 ¹H NMR spectrum (500 MHz, CDCl₃, 298K) of compound H1.

Fig. S8 ¹³CNMRspectrum (125 MHz, CDCl₃, 298K) of compound H1.

Fig. S9 HRMS spectrum of compound H1.

3. Synthesis of polymer P1

Scheme S2 Synthetic routes of polymer P1.

3.1. Synthesis of compound 7

To 50 mL of acetonitrile 4-methylumbelliferone (211.4 mg, 1.20 mmol), 4vinylbenzylchloride (152.6 mg, 1.00 mmol) and K₂CO₃ (1.38 g, 10.0 mmol) were added, and the mixture were refluxed for 12 h. After filtration, the solvent was removed with a rotary evaporator and the residue was extracted with H₂O/CH₂Cl₂. The organic phase was collected, dried over anhydrous MgSO₄ and then the solvent was removed to give a crude product, which was further purified by flash column chromatography (1:1 CH₂Cl₂/hexane, ν/ν) to afford **7** as a pale yellow liquid (240 mg, 82.1%). ¹H NMR (500 MHz, CDCl₃,298K) δ (ppm): 7.50–7.49 (d, *J* = 8.8 Hz, 1H), 7.45–7.43 (d, *J* = 8.2 Hz, 2H), 7.40–7.38 (d, *J* = 8.2 Hz, 2H), 6.94–6.91 (dd, *J_l* = 8.8 Hz, *J₂* = 2.4 Hz, 1H), 6.88 (d, *J* = 2.4 Hz, 1H), 6.75–6.69 (m, 1H), 6.13 (s, 1H), 5.79– 5.75 (d, *J* = 17.6 Hz,1H), 5.29–5.26 (d, *J* = 10.9 Hz, 1H), 5.11 (s, 2H), 2.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 298K) δ (ppm): 161.6, 161.3, 155.2, 152.6, 137.7, 136.3, 135.3, 127.8, 126.6, 125.6, 114.5, 113.8, 113.0, 112.1, 102.0, 70.3, 18.7. HRMS [M+H]⁺: calcd. for C₁₉H₁₇O₃ 293.1172, found 293.1141.

2.39

Fig. S10 ¹H NMR spectrum (500 MHz, CDCl₃, 298K) of compound 7.

Fig. S12 HRMS spectrum of compound 7.

3.2. Synthesis of compound 8

4-Vinylbenzylchloride (5.00 g, 32.8 mmol), benzylamine (35.1 g, 328 mmol) and K_2CO_3 (13.8 g, 100.0 mmol) were dissolved in 250 mL of acetonitrile and then stirred at room temperature for 24 h. The excess of benzylamine was removed in a rotary evaporator. The resulting slurry was dispersed in diethyl ether to precipitate the salt

formed in the reaction, which was then removed by filtration. The organic phase was extracted with H₂O/CH₂Cl₂, dried over anhydrous MgSO₄ and the solvent was removed with a rotary evaporator. The crude product was purified by flash column chromatography (first petroleum ether, then ethyl acetate) to afford compound **8** (5.0 g, 65.8%) as a yellow oil. ¹H NMR spectrum (500 MHz, CDCl₃, 298K) δ (ppm): 7.44–7.42 (d, J = 8.1 Hz, 2H), 7.39–7.35 (m, 7H),7.32–7.30 (m, 1H), 6.80–6.74 (dd, $J_1 = 17.6$ Hz, $J_2 = 10.9$ Hz 1H), 5.81–5.77 (dd, $J_1 = 17.6$ Hz, $J_2 = 0.8$ Hz, 1H), 5.29–5.26 (dd, $J_1 = 10.9$ Hz, $J_2 = 0.7$ Hz 1H), 3.80–3.84 (d, J = 2.5 Hz, 4H), 1.66 (s, 1H).

Fig. S13 ¹H NMR spectrum (500 MHz, CDCl₃, 298K) of compound 8.

3.3. Synthesis of compound 9

Compound **8** (1.0 g, 4.3 mmol) was dissolved in 250 mL of methanol. HCl (1 mol/L) was added to the solution for acidifying the amine and the mixture was stirred at room temperature for 1 h. After removing the solvent by a rotary evaporator, a white solid

will be obtained. The collective white solid was then dissolved in acetone/water (250mL, 5:1, v/v). To this solution, the saturated aqueous solution of NH₄PF₆ was added and stirred at room temperature for 3 h. Acetone was evaporated with a rotary evaporator to afford a yellow brown precipitate, which was filtered off and washed with deionized water to afford compound **9** as a white solid (1.1 g, 69.3%). ¹H NMR (500 MHz, DMSO, 298K) δ (ppm): 9.11 (s, 2H), 7.56–7.54 (d, *J*= 8.1 Hz, 2H), 7.50–7.44 (m, 7H), 6.79–6.74 (dd, *J*₁ = 17.6 Hz, *J*₂ = 10.9 Hz, 1H), 5.92–5.88 (d, *J*= 17.7 Hz, 1H), 5.33–5.31 (d, *J*= 10.0 Hz, 1H), 4.16 (s, 4H). ¹³C NMR spectrum (125 MHz, DMSO, 298K) δ (ppm): 138.2, 136.5, 132.7, 132.1, 130.7, 130.4, 129.4, 129.1, 126.8, 115.8, 50.6, 50.4. HRMS [M-PF₆]⁺: calcd. for C₁₆H₁₈N 224.1434, found 224.1426.

Fig. S14 ¹H NMR spectrum (500 MHz, DMSO, 298K) of compound 9.

Fig. S15¹³C NMR spectrum (500 MHz, DMSO, 298K) of compound 9.

Fig. S16 HRMS spectrum of compound 9.

3.4. Synthesis of compound **P1**

Styrene (833 mg, 8.00 mmol), compound 7 (292mg, 1.00 mmol), compound 9 (369

mg, 1.00 mmol), AIBN (13 mg, 0.08 mmol) were dissolved in DMF (10 mL). The mixture solution was added into a polymerization tube, and then was degassed by three freeze-pump-thaw cycles. After being sealed under vacuum, the mixture was reacted at 80 °C for 48 h. The reaction mixture was then dropwise added into hot methanol (200 mL). The resulting precipitate was collected and was redissolved in THF. The concentration solution was dropwise added again into hot methanol (200 mL). The dissolution-precipitation process was repeated three times, and the finally isolated precipitant was dried under vacuum at 40 °C to a constant weight. A white powder was obtained (0.83g, yield = 56%). The molar ration of three units were estimated to be x: m: n = 83: 11: 6 according to the NMR spectrum.

Fig. S17¹H NMR spectrum (500 MHz, CDCl₃, 298K) of compound P1.

3.5. Synthesis of polymer P2

P1 (0.20 g), (Boc)₂O (1.00 g, 4.58 mmol), and 4-dimethylamino pyridine (DMAP, 3 mg, 0.025 mmol) were dissolved in 2 mL of dry THF. After the mixture solution was

stirred at room temperature for 8 h, the solution was concentrated and precipitated in 40 mL of hot methanol. The dissolution-precipitation process was repeated three times to afford copolymer **P2** as a lavender solid (0.15 g, 75%). $M_{\rm n}$ 8000; $M_{\rm w}/M_{\rm n}$ 2.1 (GPC, polystyrene calibration)

Fig. S18 ¹H NMR spectrum (500 MHz, CDCl₃, 298K) of compound P2.

4. UV/Vis absorbance spectra of complexation between H1 and $Zn(OTf)_2$

Fig. S19 Change in the UV/Vis absorbance intensity upon stepwise addition of $Zn(OTf)_2$ to **H1** in CHCl₃/CH₃CN (1/1, v/v); Inset: Plot of the absorbance intensity at

327 nm versus the amount of $Zn(OTf)_2$.

5. COSY spectrum of supramolecular polymer.

Fig. S20 2D COSY spectrum of supramolecular polymer (500 MHz, CDCl₃/CD₃CN (1/1, v/v), 298K).

6. ¹H NMR spectra of concentration-dependent between P1 and $H1+Zn^{2+}$

Fig. S21 ¹H NMR spectra (500 MHz, CDCl₃/CD₃CN (1/1, v/v), 298 K) of **P1** (5.00 mM) upon addition of (a) 0 mM, (b) 3 mM, (c) 6 mM, (d) 9 mM, (e) 12 mM, (f) 15 mM, (g) 18 mM, and (h) 21 mM of **H1**+Zn²⁺. Here, c and uc refer to the complexed and uncomplexed species, respectively.

7. Fluorescence emission spectra of P1, H1, P1+H1 and P1+H1+Zn²⁺at

the different concentrations

Fig. S22 Fluorescence emission spectra of a) H1 (red line), P1 (black line), P1+H1 (blue line) and P1+H1+Zn²⁺(dark cyan) (λ_{em} = 355 nm; slit widths: ex. 5 nm, em. 5 nm; 298 K, concentration: [H1] = 100 μ M, [P1] = 18.6 μ M, [Zn²⁺] = 50 μ M); b) H1 (red line), P1 (black line), P1+H1 (blue line) and P1+H1+Zn²⁺ (dark cyan)) (λ_{em} = 355 nm; slit widths: ex. 5 nm, em. 5 nm; 298 K, concentration: [H1] = 58.4 mM, [P1] = 10 mM, [Zn²⁺] = 28.8 mM).

8. Fluorescence spectra of H1 or terpyridine derivative solutions (100 μ M) with gradual addition of Zn(OTf)₂

Fig. S23 a) Fluorescence spectra of H1 solution (100 μ M) with gradual addition of Zn(OTf)₂, b) Fluorescence spectra of terpyridine moiety solution (100 μ M) with gradual addition of Zn(OTf)₂.

9. Determination of the limit of detection of TBACl, Et₃N and cyclen

According to the literature,^{S4} the limit of detection (LOD) was determined on the basis of the fluorescence titration when TBACl, Et₃N and cyclen were added in the **P1+H1**+Zn²⁺. The LOD is calculated using the formula $3\sigma/k$, where σ is the standard deviation of blank (10 sample of I_{460}/I_{390}), and *k* is the slope between the intensity of I_{460}/I_{390} versus the concentration of TBACl, Et₃N and cyclen. Here, σ was calculated to be 0.32 from 20 blank samples.

Fig. S24 The linear dynamic fluorescence response for the titration of $P1+H1+Zn^{2+}$ ([H1] = 100 μ M, [P1] = 18.6 μ M, [Zn²⁺] = 50 μ M) with a) TBACl, b) Et₃N and c) cyclen to determine the limit of detection.

Fig. S25 Photographs and fluorescent graphs of a) supramolecular gel after damage and after free standing for b) 30 s, c) 60 s, d) 90 s, e) 120 s, f) 150 s.

References:

- S1. D. Chen, J. Y. Zhan, M. Zhang, J. Zhang, J. Tao, D. Tang, A. Shen, H. Qiu and S. Yin, *Polym. Chem.* 2015, 6, 25.
- S2. J. Zhang, J. Zhu, C. Lu, Z. Gu, T. He, A. Yang, H. Qiu, M. Zhang and S. Yin, *Polym. Chem.* 2016, 7, 4317.
- S3. L. Chen, Y. Tian, Y. Ding, Y-J. Tian and F. Wang, *Macromolecules* 2012, 45, 8412.
- S4. D. Fan, C. Shang, W. Gu, E. Wang and S. Dong, ACS Appl. Mater. Interfaces 2017, 9, 25870.