Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Hybrid Conjugated Polymers with Alternating Dithienosilole or -Germole and Tricoordinate Boron Units

Yohei Adachi,^a Yousuke Ooyama,^a Yi Ren,^b Xiaodong Yin,^b Frieder Jäkle^{b*} and Joji Ohshita^{a*}

^{*a*} Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan. E-mail: jo@hiroshima-u.ac.jp; Fax: +81-82-424-5494; Tel: +81-824-424-7743

^b Department of Chemistry, Rutgers University Newark, 73 Warren Street, Newark, New Jersey 07102, United States

Synthesis procedure for (5-bromothien-2-yl)trimethylstannane	2
NMR and MALDI-TOF mass spectra of the monomer FBDT2Br	3-7
NMR spectra of the polymers	
¹ H NMR	8-9
¹¹ B NMR	10
¹³ C NMR	10-12
¹⁹ F NMR	12
²⁹ Si NMR	13
MALDI-TOF mass spectra	14-15
DSC traces of pDTSFBDT and pDTGFBDT	15-16
Absorption and fluorescence spectra of pDTSBDT	16
Absorption and fluorescence spectra of pDTSFBDT	17
Fluorescence spectra of 0.5wt% PMMA films	17
Cyclic voltammograms	18
AFM images	19

Synthesis procedure for (5-bromothien-2-yl)trimethylstannane

To 2,5-dibromothiophene (11.1 g, 45.9 mmol) in 300 mL of dry ether, *n*-BuLi (18.3 mL, 2.5 M in hexane) were added dropwise at -78 °C. After stirring the reaction mixture at -78 °C for 0.5 h, a solution of trimethyltin chloride (10.0 g, 50.2 mmol) in THF (20 mL) was added dropwise. The reaction was allowed to slowly warm up to room temperature, stirred over night at room temperature, and then quenched by addition of water. The organic layer was extracted with DCM (3×10 mL) and all solvents were removed from the combined extracts via rotary evaporation. The product was purified by distillation under high vacuum (140-160 °C) to give a colorless oil (7.5 g, 50% yield). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ = 7.15 (d, J = 3.3 Hz, 1H), 6.97 (d, J = 3.3 Hz, 1H), 0.39 (s/d, J(^{117/119}Sn, H) = 60 Hz, 9H, SnMe₃). The spectrum is shown in Figure S1.

Figure S1 ¹H NMR spectrum of (5-bromothien-2-yl)trimethylstannane in CDCl₃ (499.9 MHz).

Figure S2 ¹H (top, 499.9 MHz) and ¹¹B NMR spectrum (bottom, 160.3 MHz) of toluene solution of crude bromobis[(5-bromo)2-thienyl]borane in CDCl₃.

Figure S3 ¹H NMR spectrum of FBDTBr2 in CDCl₃ (599.7 MHz).

Figure S4 ¹¹B NMR spectrum of FBDTBr2 in CDCl₃ (192.4 MHz).

Figure S5 ¹⁹F NMR spectrum of FBDTBr2 in CDCl₃ (470.4 MHz).

Figure S6 ¹³C NMR spectrum of FBDTBr2 in CDCl₃ (150.8 MHz).

Figure S7 MALDI-TOF mass spectrum of **FBDTBr2** (Matrix: 1,1,4,4-Tetraphenyl-1,3-butadiene, negative mode).

Figure S8 ¹H NMR spectrum of pDTSBDT (400 MHz).

Figure S9 ¹H NMR spectrum of pDTGBDT (400 MHz).

Figure S10 ¹H NMR spectrum of pDTSFBDT (400 MHz).

Figure S11 ¹H NMR spectrum of pDTGFBDT (400 MHz).

Figure S12 ¹¹B NMR spectra of the borane-dithienosilole/dithienogermole copolymers (160.4 MHz).

Figure S13 ¹³C NMR spectrum of pDTSBDT (125.7 MHz).

Figure S17 ¹⁹F NMR spectra of pDTSFBDT and pDTGFBDT (470 4 MHz).

Figure S19 A high resolution mass pattern of **pDTSBDT**. (Matrix: trans-2[3-(4-*t*-butylphenyl)-2-methyl-2-propenylidene]malononitrile)

Figure S20 A high resolution mass pattern of **pDTGBDT**. (Matrix: trans-2[3-(4-*t*-butylphenyl)-2-methyl-2-propenylidene]malononitrile)

Figure S21 A high resolution mass pattern of **pDTSFBDT**. (Matrix: trans-2[3-(4-*t*-butylphenyl)-2-methyl-2-propenylidene]malononitrile)

Figure S22 A high resolution mass pattern of **pDTGFBDT**. (Matrix: trans-2[3-(4-*t*-butylphenyl)-2-methyl-2-propenylidene]malononitrile)

Figure S23 Second cycle of DSC for pDTSFBDT.

Figure S24 Second cycle of DSC for pDTGFBDT.

Figure S25 Absorption (solid lines) and fluorescence (dashed lines) spectra of pDTSBDT in solution and as film.

Figure S26 Absorption (solid lines) and fluorescence (dashed lines) spectra of pDTSFBDT in solution and as film.

Figure S27 Fluorescence spectra of 0.5wt% PMMA films of pDTSBDT and pDTSFBDT.

Figure S28 Full cyclic voltammetry data of (a) reductive and (b) oxidative waves of the borane-dithienosilole/dithienogermole copolymers.

Figure S29 AFM topographical (top) and cross-section (bottom) images of spin-coated films of **pDTGBDT** (left) and **pDTGFBDT** (right). The position of the cross-section image is shown as a green line in the topographical image. The **pDTGBDT** film displayed triangular-shaped aggregates (Fig. 6, left) that are aligned in the same direction. It is speculated that the aggregates formed under the moment of spin-coating.