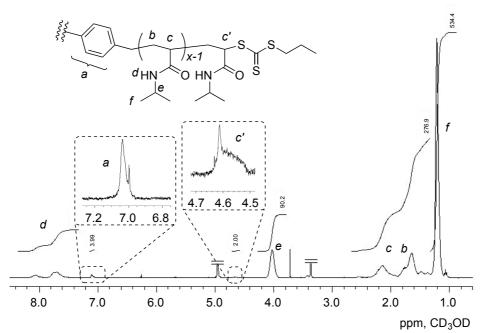
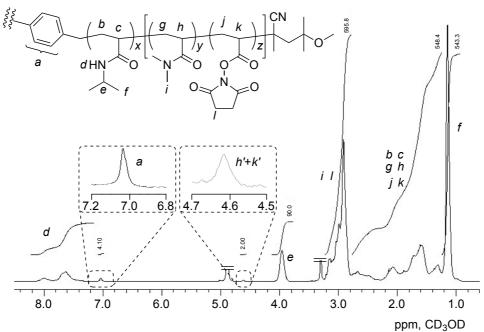
| Electronic Supplementary Material (ESI) for Polymer Chemistry. |
|----------------------------------------------------------------|
| This journal is © The Royal Society of Chemistry 2018          |

## **Electronic Supplementary Information**

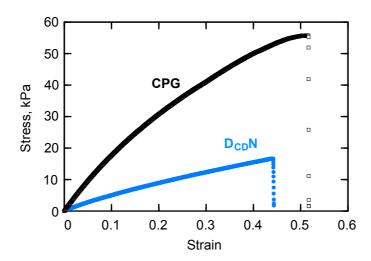
## **Swelling Properties of Thermoresponsive/Hydrophilic Conetworks**


## with Functional Crosslinked Domain Structure

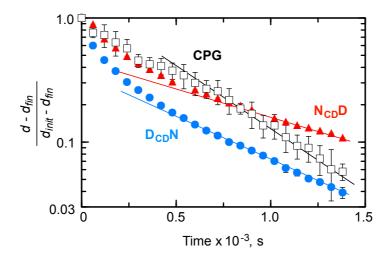
Shohei Ida, Hironobu Kitanaka, Tatsuya Ishikawa, Shokyoku Kanaoka, and Yoshitsugu Hirokawa


Department of Materials Science, The University of Shiga Prefecture,

2500 Hassaka, Hikone, Shiga 522-8533, Japan


E-mail: ida.s@mat.usp.ac.jp




**Fig. S1** <sup>1</sup>H NMR spectrum of PNIPAAm macro-CTA prepared by RAFT polymerization. Polymerization condition:  $[NIPAAm]_0 = 2000 \text{ mM}$ ,  $[CTA-1]_0 = 20 \text{ mM}$ ,  $[AIBN]_0 = 2.0 \text{ mM}$  in 1,4-dioxane at 60°C for 24 h. Experimental parameters: relaxation time = 4.0 s, number of scans = 8.



**Fig. S2** <sup>1</sup>H NMR spectrum of **DND**. Reaction condition: (polymerization) [DMAAm] = 2000 mM, [NHSA] = 200 mM, [PNIPAAm macro-CTA] = 20 mM in 1,4-dioxane at 60°C, [AIBN] = 2.0 mM; (End modification) [polymer] = 5.0 mM, [V-70] = 200 mM in 1,4-dioxane at 40 °C. Experimental parameters: relaxation time = 4.0 s, number of scans = 8.



**Fig. S3** Stress-strain curves of as-prepared  $D_{CD}N$  and **CPG** gels obtained by uniaxial tensile test. Here,  $D_{CD}N$  gel was prepared in DMF because the gel prepared in THF was difficult to be employed for measurement due to solvent evaporation.



**Fig. S4** Kinetic analysis of the shrinking behavior of  $\mathbf{D}_{CD}\mathbf{N}$ ,  $\mathbf{N}_{CD}\mathbf{D}$  and CPG upon temperature jump. When an isotropic shrinking is observed ( $\mathbf{D}_{CD}\mathbf{N}$  and  $\mathbf{N}_{CD}\mathbf{D}$ ), the relaxation time ( $\tau$ ) can be determined from the slope of the line ( $-1/\tau$ ) at the late stage of shrinking ( $t > \tau$ ): t > 400 s for  $\mathbf{D}_{CD}\mathbf{N}$  and t > 700 s for  $\mathbf{N}_{CD}\mathbf{D}$ .