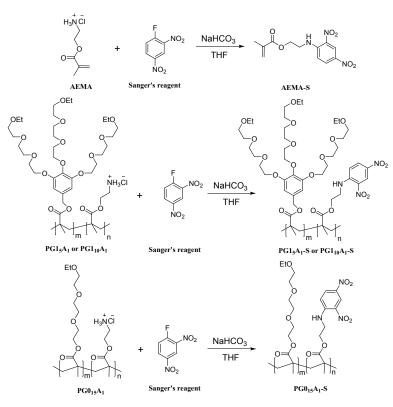
Supplementary Information


Stimuli-Responsive Dendronized Polymeric Hydrogels through Schiff-Base Chemistry Showing Remarkable Topological Effects

Jie Liu, [‡]^a Xiacong Zhang, [‡]^a Xiao Chen,^a Liangliang Qu,^b Liyuan Zhang,^b Wen Li * ^{a,b} and Afang Zhang ^a

^aDepartment of Polymer Materials, School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China. Phone: +86-21-66138044.
^bSchool of Engineering and Applied Sciences, Department of Physics, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.
[‡] These authors contributed equally to this work.
*Correspondence to: E-mail: wli@shu.edu.cn

Table of Contents

compounds
Synthesis of Sanger's reagent modified
hydrogels from $PG1_5A_1$ prepared in different buffer solutions
Fig. S10 Swelling behavior (A) and rheological properties (B) of three different
Fig. S9 SEM images of PG0 ₁₅ A ₁ hydrogels prepared at a) 33 °C and b) -22 °CS6
prepared at a) above polymer T_c and b) below polymer T_f
Fig. S8 Comparison of rheological properties of hydrogels PG1 ₅ A ₁ and PG0 ₁₅ A ₁
Fig. S7 Photographs of self-healing process of the hydrogel by optical microscope.S6
and $PG0_{15}A_1$ in 0.25 wt % aqueous solutions
Fig. S6 Plots of transmittance versus temperature for copolymers $PG1_5A_1$, $PG1_{10}A_1$
concentrations
and b) PG1 ₅ A ₁ -S, PG1 ₁₀ A ₁ -S and PG0 ₁₅ A ₁ -S aqueous solutions at different
Fig. S5 a) UV/Vis spectra of AEMA-S aqueous solutions at different concentrations
temperature
Fig. S4 ¹ H NMR spectrum of the monomer AEMA-S in CDCl ₃ at room
temperature
Fig. S3 ¹ H NMR spectra of polymers PG0 ₁₅ A ₁ and PG0 ₁₅ A ₁ -S in CDCl ₃ at room
temperature
Fig. S2 ¹ H NMR spectra of polymers $PG1_{10}A_1$ and $PG1_{10}A_1$ -S in CDCl ₃ at room
temperature
Fig. S1 ¹ H NMR spectra of copolymers PG1 ₅ A ₁ and PG1 ₅ A ₁ -S in CDCl ₃ at room
its corresponding copolymers PG1A-S and PG0A-SS3
Scheme S1 Synthetic routes for Sanger's reagent modified monomers AEMA-S and

Scheme S1 Synthetic routes for Sanger's reagent modified monomers AEMA-S and its corresponding copolymers PG1A-S and PG0A-S.

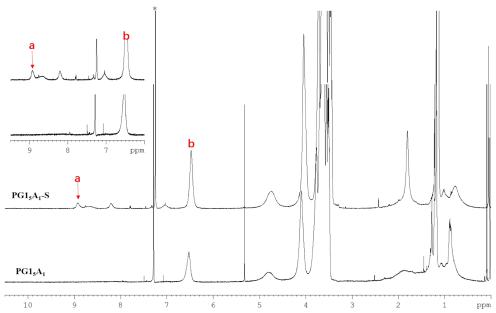


Fig. S1 ¹H NMR spectra of copolymers $PG1_5A_1$ and $PG1_5A_1$ -S in CDCl₃ at room temperature. The signals from CDCl₃ are marked as *.

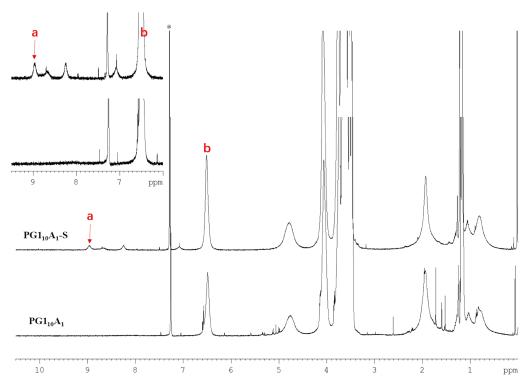


Fig. S2 ¹H NMR spectra of polymers $PG1_{10}A_1$ and $PG1_{10}A_1$ -S in CDCl₃ at room temperature. The signals from CDCl₃ are marked as *.

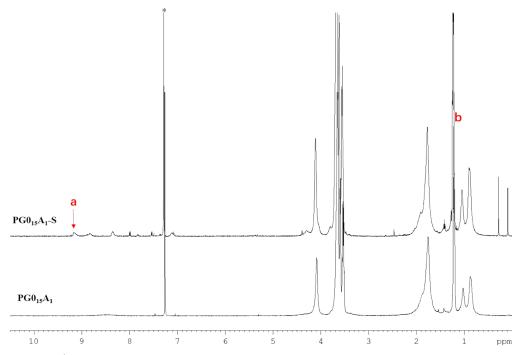
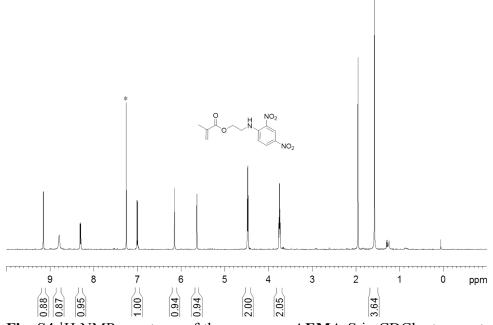



Fig. S3 ¹H NMR spectra of polymers $PG0_{15}A_1$ and $PG0_{15}A_1$ -S in CDCl₃ at room temperature. The signals from CDCl₃ are marked as *.

Fig. S4 ¹H NMR spectrum of the monomer **AEMA-S** in CDCl₃ at room temperature. The signals from CDCl₃ are marked as *.

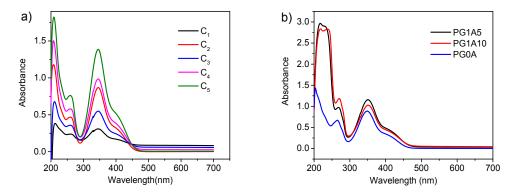


Fig. S5 a) UV/Vis spectra of AEMA-S aqueous solutions at different concentrations and b) $PG1_5A_1$ -S, $PG1_{10}A_1$ -S and $PG0_{15}A_1$ -S aqueous solutions at different concentrations.

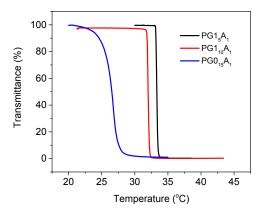


Fig. S6 Plots of transmittance versus temperature for copolymers $PG1_5A_1$, $PG1_{10}A_1$ and $PG0_{15}A_1$ in 0.25 wt % aqueous solutions. Heating and cooling rate = 10 °C/min.

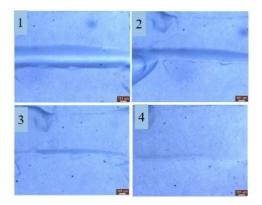


Fig. S7 Photographs of self-healing process of the hydrogel by optical microscope.

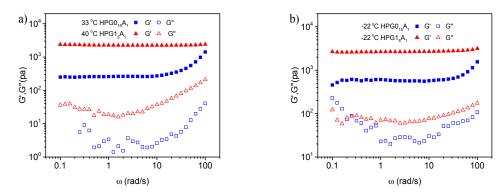


Fig. S8 Comparison of rheological properties of hydrogels $PG1_5A_1$ and $PG0_{15}A_1$ prepared at a) above polymer T_c and b) below polymer T_f .

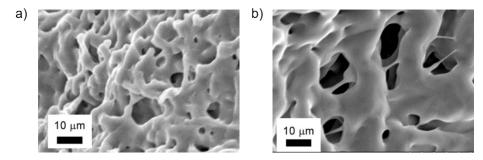
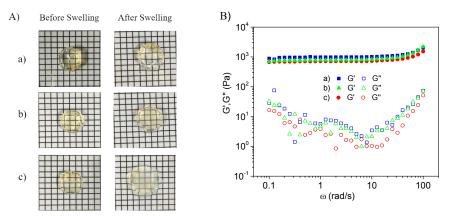



Fig. S9 SEM images of PG0₁₅A₁ hydrogels prepared at a) 33 °C and b) -22 °C.

Fig. S10 Swelling behavior (A) and rheological properties (B) of three different hydrogels from **PG1₅A₁** prepared in different buffer solutions (25 °C, 10 wt%): a) NaHCO₃/NaOH, b) KHCO₃/KOH, c) NH₄Cl/NH₄OH.

Synthesis of Sanger's reagent modified compounds

General procedures. A solution of AEMA or PGAs in THF and H_2O was treated with NaHCO₃ and 1-fluoro-2, 4-dinitrobenzene and then stirred for 8 h at room temperature, diluted with ethyl acetate, and washed with saturated aqueous NH₄Cl solution. The aqueous phase was re-extracted once with ethyl acetate, and the combined organic phases were dried over MgSO₄ and concentrated. After that, the copolymer was dialyzed against deionized water and lyophilized.

AEMA-S: According to general procedure for reaction, from **AEMA** (22.17 mg, 0.13 mmol), THF (2 mL), NaHCO₃ (20.32 mg, 0.24 mmol) and 1-fluoro-2, 4-dinitrobenzene (79 mg, 0.43 mmol), stirred for 8 h at room temperature afforded AEMA-S (28.33 mg, 72%) as a yellow solid. ¹H NMR (CDCl₃, δ): 1.58 (s, 3H, CH₃), 3.75 (q, 2H, CH₂), 4.48 (t, 2H, CH₂), 5.64 (s, 1H, CH), 6.15 (s, 1H, CH), 7.00 (d, 1H, ArH), 8.29-8.32(m, 1H, ArH), 8.79 (s, 1H, NH), 9.15(d, 1H, ArH).

PG1₅A₁-S: According to general procedure for reaction, from **PG1₅A₁** (21.11 mg), THF (0.5 mL), NaHCO₃ (1.50 mg, 0.017 mmol) and 1-fluoro-2, 4-dinitrobenzene (10.00 mg, 0.06 mmol), stirred for 8 h at room temperature afforded PG1₅A₁-S as a yellow solid. ¹H NMR (CDCl₃, δ): 0.20-1.45 (m, CH+CH₂), 1.43-2.72 (m, CH₂), 2.80-4.38 (m, CH₂), 4.75 (s, CH₂), 6.48 (br, ArH), 7.05 (br, ArH), 8.21 (br, ArH), 8.67 (br, NH), 8.92 (br, ArH).

PG1₁₀**A**₁**-S:** According to general procedure for reaction, from **PG1**₁₀**A**₁ (20.04 mg), THF (0.5 mL), NaHCO₃ (1.53 mg, 0.017 mmol) and 1-fluoro-2,4-dinitrobenzene (10.00 mg, 0.06 mmol), stirred for 8 h at room temperature afforded PG1₁₀**A**₁-S as a yellow solid. ¹H NMR (CDCl₃, δ): 0.22-1.52 (m, CH+CH₂), 1.55-2.73 (m, CH₂), 2.80-4.41 (m, CH₂), 4.89 (s, CH₂), 6.51(br, ArH)7.08 (br, ArH), 8.26 (br, ArH), 8.67 (br, NH), 8.98 (br, ArH).

PG0₁₅**A**₁**-S:** According to general procedure for reaction, from **PG0**₁₅**A**₁ (20.11 mg), THF (0.5 mL), NaHCO₃ (1.62 mg, 0.019 mmol) and 1-fluoro-2,4-dinitrobenzene (10.00 mg, 0.06 mmol), stirred for 8 h at room temperature afforded PG0₁₅**A**₁-S as a yellow solid. ¹H NMR (CDCl₃, δ): 0.86-1.02 (m, CH+CH₂), 1.54-2.12 (m, CH₂), 3.40-3.86 (m, CH₂), 3.93-4.18 (m, CH₂), 7.08 (br, ArH), 8.34 (br, ArH), 8.79 (br, NH), 9.11 (br, ArH).