Supplementary Information

Electron Beam Lithography of Poly(glycidol) Nanogels for Immobilization of Three-Enzyme Cascade

Jacob N. Lockhart^a, Anthony B. Hmelo^a and Eva Harth^{b*}

^aDepartment of Chemistry, Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, 7665 Stevenson Center, Nashville, TN 37235.

^bDepartment of Chemistry, Center of Excellence in Polymer Research, 406 STL Building, University of Houston, Houston, TX 77402, United States

Corresponding Author: harth@uh.edu

1. NMR Inverse-Gated ¹³C Characterization for Semi-Branched Polyglycidol

Figure S1: Full labeled inverse-gated ¹³C-NMR (600 MHz) spectrum of semi-branched polyglycidol homopolymer in deuterated methanol with inset (top) of 62-84 ppm region. Relaxation time (D₁) was 10 sec, and number of scans (NS) was 1024. Degree of branching was calculated as 0.36 (semi-branched) based on relative integration values of dendritic units (D) compared with linear backbone units (L_{1,3}, L_{1,4}) as described in the literature.^{1 2 3 4}

2. Film Thickness Determination from Spin-coat Parameters for Semi-branched Polyglycidol

Figure S2: Left plot represents dry film thickness resulting from various concentrations of semi-branched polyglycidol (wt% in DI water) after spin-coating 50 μ L on to piranha clean 10 x 10 mm silicon chips at 3000 rpm for 60 s, followed by drying overnight. The bottom plot represents film thickness as a result of spin-coating 50 μ L of 5 wt% polyglycidol in DI water onto clean silicon at varying spin speeds (1000-4000 r.p.m. for 60 s) followed by drying overnight. Film thickness was measured by ellipsometry, and all experiments were performed in triplicate. Error bars represent standard deviation (n=3).

3. Dose Test Pattern of Semi-branched Polyglycidol via Electron Beam Lithography

Figure S3. Left: Bright field microscopy image of semi-branched polyglycidol dose test from 1-400 μ C/cm² captured at 20 x magnification. black bar represents 20 μ m.

4. Crosslinked Polyglycidol Thickness (nm) vs. Electron Beam Dose (µC/cm²)

Figure S4. Atomic force microscopy plot (top) which indicates crosslinked polyglycidol film thickness postdevelopment at varying electron beam irradiation doses (μ C/cm²). Corresponding dose squares (bottom) were captured with a bright field microscope equipped with a camera, and the black bar represents 10 μ m.

5. Optimization of Enzyme Ratio for Cascade Reaction in Solution

Figure S5. Relative absorbance measurements of 2,3-diaminophenazine at 416 nm after 30 min incubations in three different enzyme ratio concentrations (equivalent to 5 μ m) in free solution. Error bars are standard deviation (n=3), and asterisk (*) denotes significance (p < 0.05) between all sets as determined via ANOVA single factor analysis.

References

1. Spears, B. R.; Marin, M. A.; Montenegro-Burke, J. R.; Evans, B. C.; McLean, J.; Harth, E., Aqueous Epoxide Ring-Opening Polymerization (AEROP): Green Synthesis of Polyglycidol with Ultralow Branching. *Macromolecules* **2016**, *49* (6), 2022-2027.

2. Spears, B. R.; Waksal, J.; McQuade, C.; Lanier, L.; Harth, E., Controlled branching of polyglycidol and formation of protein-glycidol bioconjugates via a graft-from approach with "PEG-like" arms. *Chemical communications (Cambridge, England)* **2013**, *49* (24), 2394-6.

3. Schull, C.; Gieshoff, T.; Frey, H., One-step synthesis of multi-alkyne functional hyperbranched polyglycerols by copolymerization of glycidyl propargyl ether and glycidol. *Polymer Chemistry* **2013**, *4* (17), 4730-4736.

4. Wilms, D.; Stiriba, S. E.; Frey, H., Hyperbranched Polyglycerols: From the Controlled Synthesis of Biocompatible Polyether Polyols to Multipurpose Applications. *Accounts Chem Res* **2010**, *43* (1), 129-141.