Electronic Supplementary Information

Effect of Incorporating Different Chalcogenophene

Comonomers into Random Acceptor Terpolymers on

the Morphology and Performance of All-Polymer Solar

Cells

Yujin An, ^{a,‡} Jiyeon Oh, ^{a,‡} Shanshan Chen, ^a Byongkyu Lee, ^a Sang Myeon Lee, ^a Daehee Han, ^a and Changduk Yang ^{a,*}

^aDepartment of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.

*Corresponding authors

[‡]The first two authors contributed equally to this work.

E-mail address: yang@unist.ac.kr

Fig. S1 Calculation of chalcogenophenes (Fu, Th, and Se) ratio in NDI-T2 units using Gaussian curves. The actual ratios of the random terpolymers were calculated based on the

following equation; the ratio of chalcogenophene (Fu, Th, or Se) (%) = $\frac{Aa}{(Aa + Ab)} \times 100 = \frac{Ha}{(Ha + Hb)} \times 100$, the ratio of T2 (%) = $\frac{Ab}{(Aa + Ab)} \times 100 = \frac{Hb}{(Ha + Hb)}$, where A_a and A_b are the area of the signals of the chalcogenophenes (7.5 -7.7 ppm) and T2 (7.41 ppm) and H_a and H_b indicate their heights, respectively $H_{\rm b}$ indicate their heights, respectively.

PNDI-Fu10	Bithiophene (T2) unit	Donor (Fu) unit	
Ratio of proton	2	1	
Ratio of donor unit	9	1	
Theoretical ratio	18 (0.947)	1 (0.052)	
Actual ratio	0.945	0.054	
PNDI-Th10	Bithiophene (T2) unit	Donor (Th) unit	
Ratio of proton	2	1	
Ratio of donor unit	9	1	
Theoretical ratio	18 (0.947)	1 (0.052)	
Actual ratio	0.955	0.045	
PNDI-Se10	Bithiophene (T2) unit	Donor (Se) unit	
Ratio of proton	2	1	
Ratio of donor unit	9	1	
Theoretical ratio	18 (0.947)	1 (0.052)	
Actual ratio	0.945	0.054	

Table S1 Comparison of theoretical ratio and actual ratio through analysis of ¹H-NMR at 70°C of the random terpolymers with 9:1 ratio

Fig. S2 DSC thermograms of neat random terpolymers measured with a scan rate of 10°C per a minute.

Fig. S3 Dihedral angle and charge distributions of random copolymers calculated by DFT, respectively (B3LYP/6-31G*).

Fig. S4 Current density-voltage (*J-V*) curves and photovoltaics parameters of FTQ:P(NDI2OD-T2).

Fig. S5 The absorption spectra of the random terpolymer films blended with FTQ donor polymer.

Fig. S6 GIWAXS line-cut profile of blend film (a) in-plane and (b) out-of-plane.

Donor:Acceptor	In-Plane				Out-of-Plane	
	Unit cell long axis (<i>100</i>)				π - π stacking cell axis (010)	
	q (Å ⁻¹)	<i>d</i> -spacing (Å)	FWHM (Å ⁻¹)	Correlation length (Å)	q (Å ⁻¹)	<i>d</i> -spacing (Å)
FTQ: PNDI-Fu10	0.241	26.071	0.054	104.7	1.703	3.689
FTQ: PNDI-Th10	0.236	26.623	0.048	117.8	1.688	3.722
FTQ: PNDI-Se10	0.236	26.623	0.050	113.1	1.680	3.739

 Table S2 The GIWAXS parameters of in-plane and out-of-plane.

Fig. S7 2D GIWAXS images of the neat polymer films.

Polymers	Ι	n-Plane	Out-of-Plane		
	Unit cell	long axis (100)	π - π stacking cell axis (010)		
	q (Å-1)	d-spacing (Å)	q (Å-1)	d-spacing (Å)	
FTQ	0.228	27.557	1.69	3.71	
P(NDI-Th10)	0.251	25.032	1.560	4.02	
P(NDI-Se10)	0.257	24.448	1.566	4.01	
P(NDI-Fu10)	0.257	24.448	1.588	3.95	

Table S3 The GIWAXS parameters of the neat polymers.