Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

A New Echelon of Precision Polypentenamers: Highly Isotactic Branching on Every Five Carbons Stefan Brits, William J. Neary, Goutam Palui, & Justin G. Kennemur

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL

32306, USA

Table of Contents:

Synthesis of Mosher acid and DACH-Phenyl Trost Ligand	S3
Figure SI-1. ¹ H NMR spectra of <i>rac</i> -1	S4
Figure SI-2. ¹³ C NMR spectra of <i>rac</i> -1	S5
Figure SI-3. ¹ H- ¹ H COSY spectra of <i>rac</i> -1	S6
Figure SI-4. GC-EI/MS of rac-1	S7
Figure SI-5. ¹ H NMR spectra of <i>rac-3</i>	S 8
Figure SI-6. ¹³ C NMR spectra of <i>rac</i> -3	S9
Figure SI-7. ¹ H- ¹ H COSY spectra of <i>rac</i> -3	S10
Figure SI-8. GC-EI/MS of rac-3	S11
Figure SI-9. ¹ H NMR spectra of <i>rac</i> -2	S12
Figure SI-10. ¹³ C NMR spectra of <i>rac</i> -2	S13
Figure SI-11. ¹ H- ¹ H COSY spectra of <i>rac</i> -2	S14
Figure SI-12. GC-EI/MS of rac-2	S15
Figure SI-13. ¹ H NMR spectra of <i>rac</i> -4	S16
Figure SI-14. ¹³ C NMR spectra of <i>rac</i> -4	S17
Figure SI-15. ¹ H- ¹ H COSY spectra of <i>rac</i> -4	S18
Figure SI-16. GC-EI/MS of rac-4	S19
Figure SI-17. ¹ H NMR spectra of (S)-1	S20
Figure SI-18. ¹³ C NMR spectra of (S)-1	S21
Figure SI-19. GC-EI/MS of (S)-1	S22
Figure SI-20. ¹ H NMR spectra of (S)-2-MTPACP ester	S23
Figure SI-21. ¹ H- ¹ H COSY spectra of (S)-2-MTPACP ester	S24

Figure SI-22. ¹ H NMR spectra of (S)-2-MTPACP ester for % enantiomeric excess	S25
Figure SI-23. ¹⁹ F NMR of (S)-2-MTPACP ester for % enantiomeric excess	S26
Figure SI-24. ¹ H NMR of (<i>S</i>)-3	S27
Figure SI-25. ¹³ C NMR of (<i>S</i>)-3	S28
Figure SI-26. GC-EI/MS of (S)-3	S29
Figure SI-27. ¹ H NMR spectra of (R, R)-DACH Phenyl Trost ligand	
Figure SI-28. ¹³ C NMR spectra of (R, R)-DACH Phenyl Trost ligand	
Figure SI-29. ³¹ P NMR spectra of (R, R)-DACH Phenyl Trost ligand	S32
Figure SI-30. ¹ H NMR spectra of Poly[(S)-3]	S33
Figure SI-31. ¹³ C NMR spectra of Poly[(S)-3]	S34
Figure SI-32. ¹ H- ¹ H COSY spectra of Poly[(S)-3]	S35
Figure SI-33. ¹ H-NMR of Poly(S)-3 determination %HT and % trans.	S36
Figure SI-34. SEC RI trace of Poly(S)-3.	S37
Figure SI-35. ¹ H NMR of spectra of Poly(rac-3)	S38
Figure SI-36. ¹³ C NMR of spectra of Poly(rac-3)	S39
Figure SI-37. ¹ H- ¹ H COSY of spectra of Poly(rac-3)	S40
Figure SI-38. ¹ H-NMR of Poly(<i>rac</i> -3) determination %HT and % trans.	
Figure SI-39. SEC RI trace of Poly(<i>rac</i> -3).	S42
Figure SI-40. ¹ H NMR spectra of Poly(rac-2)	S43
Figure SI-41. ¹³ C NMR spectra of Poly(rac-2)	S44
Figure SI-42. ¹ H- ¹ H COSY spectra of Poly(rac-2)	S45
Figure SI-43. ¹ H-NMR of Poly(<i>rac-2</i>) determination %HT and % trans.	S46
Figure SI-44. SEC RI trace of Poly(<i>rac</i> -2).	S47
Figure SI-45. ¹ H NMR spectra of Poly(rac-1)	S48
Figure SI-46. ¹³ C NMR spectra of Poly(rac-1)	S49
Figure SI-47. ¹ H- ¹ H COSY spectra of Poly(rac-1)	S50
Figure SI-48. ¹ H-NMR of Poly(<i>rac-2</i>) determination %HT and % trans.	S51
Table SI-49. Equilibrium conversion of Poly(rac-3)	S52
Figure SI-50. Conversion vs. time of Poly(rac-3)	S53
Figure SI-51. TGA curve of Poly(<i>rac</i> -1), poly(<i>rac</i> -2), and poly(rac-3)	S54
Figure SI-52. DSC overlay of all polymer samples	S55

Mosher acid synthesis for the determination of % enantiomeric excess:¹

To a flame dried 4mL vial equipped with a stir bar, 7.1 mg (84.4 μ mol, 1 eq.) of (S)-1 and 1.00 mL of DCM that was previously run through a plug of silica gel were added. To a separate dry vial, 0.0613 g (261.6 μ mol, 3.1 eq.) of (R)-(+)- α -methoxy- α -trifluoromethylphenylacetic was added and dissolved in 0.32 mL of DCM. This solution was then added to (S)-1. To the solution, 0.0545g (261.4 μ mol, 3.1 eq.) of DCC and 0.0323g (261.4 μ mol, 3.1 eq.) of DMAP were added and capped. The mixture was allowed to stir for 3 hours. At this time, the mixture was run through a cotton plug and concentrated. The mixture was purified with a pipet column in 4:1 hexanes:EtOAc. The product was then concentrated and placed on the high-vacuum for 30 minutes. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.51 (m, 2H), 7.40 (m, 3H), 6.15 (ddd, J = 5.7, 2.6, 1.6 Hz, 1H), 5.92 (m, 1H), 5.86 (m, 1H), 3.55 (s, 1H), 2.50 (dtdd, J = 15.8, 8.9, 4.2, 2.4 Hz, 1H), 2.37 (m, 2H), 1.95 (m, 1H)

(R, R)-DACH Phenyl Trost ligand:^{2,3}

The Trost ligand was synthesized following previous literature¹ with the following modifications. The brown solid was purified with 97.5:2.5 DCM:MeOH via column chromatography and recrystallized twice from MeCN to yield a white solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.60 – 7.55 (m, 2H), 7.35 – 7.17 (m, 24H), 6.94 – 6.88 (m, 2H), 6.32 (d, J = 6.9 Hz, 2H), 3.82 – 3.73 (m, 2H), 1.90 – 1.82 (m, 2H), 1.69 – 1.61 (m, 2H), 1.28 – 1.15 (m, 2H), 0.98 (td, J = 15.1, 13.8, 6.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 169.29, 140.88, 140.72, 137.84, 137.76, 137.70, 136.73, 136.58, 134.27, 133.95, 133.82, 130.16, 128.75, 128.60, 128.54, 128.51, 128.49, 128.45, 128.40, 53.89, 32.00, 24.66. ³¹P NMR (243 MHz, CDCl₃) δ -9.78.

Figure S1. ¹H-NMR spectrum of *rac*-1, (in *CDCl₃ 400 MHz)

Figure S2. ¹³C-NMR spectrum of *rac*-1, (in *CDCl₃ 150 MHz)

Figure S3. ¹H-¹H COSY spectrum of *rac*-1, (in CDCl₃ 600 MHz)

Figure S4. The mass spectrum at RT 4.08-4.12 min for *rac*-1. The molecular peak is observed at m/z 84.07.

Figure S5. ¹H-NMR spectrum of *rac*-3, (in *CDCl₃ 500 MHz).

Figure S6. ¹³C-NMR spectrum of *rac*-3, (in *CDCl₃ 150 MHz)

Figure S7. ¹H-¹H COSY spectrum of *rac*-3, (in CDCl₃ 500 MHz).

Figure S8: The mass spectrum at RT 8.27-8.32 min for the sample *rac*-3 The molecular peak is observed at m/z 198.15.

Figure S9. ¹H-NMR spectrum of *rac*-2, (in *CDCl₃ 400 MHz)

Figure S10. ¹³C-NMR spectrum of *rac*-2, (in *CDCl₃ 150 MHz)

Figure S11. ¹H-¹H COSY spectrum of *rac*-2, (in CDCl₃ 600 MHz)

Figure S12. The mass spectrum at RT 5.60-5.65 min for the sample *rac*-2. The molecular peak is observed at m/z 156.10.

Figure S13. ¹H-NMR spectrum of *rac*-4, (in *CDCl₃ 400 MHz)

Figure S14. ¹³C-NMR spectrum of *rac*-4, (in *CDCl₃, 150 MHz)

Figure S15. ¹H-¹H COSY spectrum of *rac*-4, (in CDCl₃ 600 MHz)

Figure S16: The mass spectrum at RT 5.74-5.81 min of *rac*-4. The molecular peak is observed at m/z 126.04.

Figure S 17. ¹H-NMR spectrum of (S)-1 (in *CDCl₃, 400 MHz)

Figure S 18. ¹³C NMR spectrum of (S)-1 (in CDCl₃, 150 MHz)

Figure S19: The mass spectrum at RT 4.08-4.12 min for (*S*)-1. The molecular peak is observed at m/z 84.06.

Figure S 20. ¹H-NMR spectrum of (*S*)-2-MTPACP ester (in *CDCl₃, 400 MHz).

Figure S21. ¹H-¹H COSY spectrum of (S)-2-MTPACP ester, (in CDCl₃, 400 MHz,).

Figure S 23. ¹⁹F NMR spectrum of (*S*)-2-MTPACP ester (in CDCl₃, 376.5 MHz,). Deconvolution of the peaks were used to determine the integration of the two peaks. $% ee = \frac{area \ major}{(area \ major + area \ min^{[m]})} * 100 = 90.4 \% \ ee$

Figure S 25. ¹³C NMR of (*S*)-3 (in CDCl3, 100 MHz)

Figure S 26: The mass spectrum at RT 8.27-8.34 min of (*S*)-3. The molecular peak is observed at m/z 198.16.

Figure S 27. ¹H NMR spectrum of Trost ligand (in *CDCl₃, 600 MHz) # DCM

Figure S 28. ¹³C NMR spectra of the TROST Ligand (in CDCl₃, 150 MHz)

Figure S 29. ³¹P NMR spectrum of Trost ligand (in CDCl₃, 243 MHz)

Figure S 30. ¹H NMR spectrum of Poly[(*S*)-3], (in *CDCl₃, 400 MHz)

Figure S 31. ¹³C NMR spectrum of Poly[(S)-3], (in *CDCl₃, 150 MHz)

Figure S 32. ¹H-¹H COSY spectrum of Poly[(*S*)-3] (CDCl₃, 150 MHz)

Figure S 33. ¹H-NMR spectrum of Poly[(*S*)-3] (CDCl₃, 400 MHz). Deconvolution of the peaks were used to determine the %HT and % trans of the polymer.

$$\% HT = \frac{\text{area of } cis - HT + trans - HT}{\text{total area } cis - HT + trans - HH + trans - HT} * 100 = 91.4 \%.$$

$$\% \text{ trans} = \frac{\text{area of } trans - HH + trans - HT}{\text{total area } cis - HT + trans - HH + trans - HT} * 100 = 95.6 \%$$

Figure S 34. SEC RI trace of Poly(*S*)-3. (Đ – 2.81, Mn – 30.2 kDa)

MHz)

Figure S 36. ¹³C NMR of spectrum of Poly(rac-3), (in *CDCl₃, 150 MHz)

Figure 37. ¹H-¹H COSY of spectrum of Poly(*rac*-3), (in CDCl₃, 500 MHz)

Figure S 38. ¹H-NMR spectrum of Poly(*rac-3*) (CDCl₃, 400 MHz). ,). Deconvolution of the peaks were used to determine the %HT and % trans of the polymer.

$$\% HT = \frac{\text{area of } cis - HT + trans - HT}{\text{total area } cis - HT + trans - HH + trans - HT} * 100} = 92.1 \%.$$

$$\% trans = \frac{\text{area of } trans - HH + trans - HT}{\text{total area } cis - HT + trans - HH + trans - HT} * 100} = 95.6 \%.$$

Figure S 39. SEC RI trace of Poly(*rac*-3). (Đ – 2.56, Mn – 22.3 kDa)

Figure S 40. ¹H NMR spectrum of Poly(*rac*-2), (in *CDCl₃, 500 MHz)

Figure S 41. ¹³C NMR spectrum of Poly(*rac-2*), (in *CDCl₃, 150 MHz)

Figure S 42. ¹H-¹H COSY spectrum of Poly(*rac*-2), (in CDCl₃, 500 MHz)

Figure S 43. ¹H-NMR spectrum of Poly(*rac-2*) (CDCl₃, 400 MHz). ,). Deconvolution of the peaks were used to determine the %HT and % trans of the polymer.

$$\% HT = \frac{\text{area of } cis - HT + trans - HT}{\text{total area } cis - HT + trans - HH + trans - HT} * 100 = 68.3 \%.$$

$$\% trans = \frac{\text{area of } trans - HH + trans - HT}{\text{total area } cis - HT + trans - HH + trans - HT} * 100 = 94.2 \%$$

Figure S 44. SEC RI trace of Poly(*rac*-2). (Đ – 2.07, Mn – 41.6 kDa)

Figure S 45. ¹H NMR spectrum of Poly(*rac*-1), (*DMF-*d*₇, 600 MHz)

Figure S 46. ¹³C NMR spectrum of Poly(*rac*-1), (*DMF₇, 150 MHz)

Figure S 47. ¹H-¹H COSY spectra of Poly(*rac*-1) (CDCl₃, 600 MHz)

Figure S 48. ¹H-NMR spectrum of Poly(*rac*-1) (CDCl₃, 400 MHz). Deconvolution of the peaks were used to determine the %HT and % trans of the polymer.

$$\% HT = \frac{\text{area of } cis - HT + trans - HT}{\text{total area } cis - HT + trans - HH + trans - HT} * 100 = 57 \%.$$

$$\% trans = \frac{\text{area of } trans - HH + trans - HT}{\text{total area } cis - HT + trans - HH + trans - HT} * 100 = 91 \%.$$

Time (min)	conv ^a %
31.5	4.8
52.33	14.5
90	33.1
116	33.3
157	33.3

Table S49: Aliquot characterization of Poly(*rac*-3) at 2.5 M with HG2 at -10 °C.

^a Determined by ¹H NMR (400 MHz in CDCl₃).

Figure S50. Equilibrium conversion of Poly(*rac*-3) with respect to time.

Figure S51. TGA analysis of poly(*rac-1*), poly(*rac-2*) and poly(*rac-3*) after equilibration at 110 °C followed by heating at 10 °C min⁻¹ to 750 °C under argon.

Figure S52. Differential scanning calorimetry thermograms of each polymer sample. The thermal range chosen was based on the minimum temperature for the instrument (-70 °C) and the temperature at which thermal decomposition of the polymer is suspected (~ 200 °C) based on TGA. Jagged baseline noise is present above 100 °C on some samples and was determined to be an artifact of the instrument by repeated cycles where this noise was found inconsistent.

References:

- 1. T. R. Hoye, C. S. Jeffrey and F. Shao, *Nature Protocols*, 2007, **2**, 2451.
- 2. B. M. Trost, D. L. Van Vranken and C. Bingel, J. Am. Chem. Soc., 1992, 114, 9327-9343.
- 3. S. Fuchs, V. Berl and J.-P. Lepoittevin, *European Journal of Organic Chemistry*, 2007, 2007, 1145-1152.