Supporting Information

A Family of Linear Phenolic Polymers with Controlled Hydrophobicity, Adsorption and Antioxidant Properties

Raman Hlushko, ${ }^{a}$ Hanna Hlushko, ${ }^{\text {a }}$ and Svetlana A. Sukhishvili*a
${ }^{a}$ Department of Materials Science and Engineering, Texas A\&M University, RDMC 3003
TAMU, College Station, TX, 77843-3003. E-mail: svetlana@,tamu.edu
Tables S1-S3. Specific amounts of monomers and deprotecting agents used for synthesis of antioxidant polymers of targeted compositions.

Table S1. $\mathrm{P} 2 \mathrm{H}_{\mathrm{Z}} \mathrm{Hex}$ series and PHex

Targeted molar content, \%	Polymerization			Deprotection reaction	
	methacrylamide (1)		Yield (\%)	Polymer	$\begin{aligned} & 2 \mathrm{M} \mathrm{BBr}_{3} \\ & \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$
0	1.94 g	-	88	-	-
5	1.84 g	0.135 g	83	0.500 g	0.300 mL
10	1.75 g	0.270 g	83	0.509 g	0.500 mL
15	1.65 g	0.405 g	77	0.520 g	0.700 mL
100	-	2.70 g	73	0.680 g	4.50 mL

Table S2. $\mathrm{PBrH}_{\mathrm{Z}} \mathrm{Hex}$ series

Targeted molar content, \%	Polymerization			Deprotection reaction	
	methacrylamide (1)	 N -(3,4-dimethoxy-5bromobenzyl) methacrylamide (6)	Yield (\%)	Polymer	$\begin{aligned} & 2 \mathrm{M} \mathrm{BBr}_{3} \\ & \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$
5	1.84 g	0.180 g	75	0.500 g	0.300 mL
10	1.75 g	0.361 g	73	0.532 g	0.500 mL
15	1.65 g	0.541 g	68	0.550 g	0.700 mL
100	-	3.60 g	59	0.910 g	4.50 mL

Table S3. $\mathrm{P} 3 \mathrm{H}_{\mathrm{Z}} \mathrm{Hex}$ series

Targeted molar content, \%	Polymerization			Deprotection reaction	
	methacrylamide (1)		Yield (\%)	Polymer	$\begin{aligned} & 2 \mathrm{M} \mathrm{BBr}_{3} \\ & \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$
5	1.84 g	0.152 g	81	0.503 g	0.400 mL
10	1.75 g	0.307 g	79	0.517 g	0.700 mL
15	1.65 g	0.457 g	82	0.530 g	1.00 mL
100	-	3.04 g	76	0.770 g	6.50 mL

Fig. S1. The number-average molecular weight $\mathrm{M}_{\mathrm{n}}(\mathrm{A})$ and molar mass dispersities (B) as a function of polymerization time during synthesis of $\mathrm{P} 2 \mathrm{M}_{10} \mathrm{Hex}, \mathrm{PBrM}_{10} \mathrm{Hex}$, or $\mathrm{P} 3 \mathrm{M}_{10} \mathrm{Hex}$ at $80^{\circ} \mathrm{C}$.

Fig. S2. GPC traces of $\mathrm{PHex}(\mathrm{A}), \mathrm{P}_{2} \mathrm{M}_{10} \mathrm{Hex}(\mathrm{B}), \mathrm{PBrM}_{10} \mathrm{Hex}(\mathrm{C})$ for different polymerization times, as well as $\mathrm{M}_{\mathrm{n}}(\mathrm{D})$ and molar mass dispersities (E) as a function of monomer conversion during polymerization of PHex homopolymer and copolymers containing 10% of phenolic precursor groups at $70^{\circ} \mathrm{C}$.

Fig. S3. FTIR spectra of protected and deprotected $\mathrm{P} 3 \mathrm{M}_{100}$ and $\mathrm{P} 3 \mathrm{H}_{100}$ homopolymers (A), $\mathrm{P} 3 \mathrm{M}_{15} \mathrm{Hex}$ and $\mathrm{P} 3 \mathrm{H}_{15} \mathrm{Hex}$ copolymers $(\mathrm{B}$, top) and PHex control polymer (B , bottom).

Fig. S4. FTIR spectra of protected and deprotected homopolymers: $\mathrm{P}_{2} \mathrm{M}_{100}$ and $\mathrm{P}_{2} \mathrm{H}_{100}(\mathrm{~A})$, and PBrM_{100} and PBrH_{100} (B).

Fig. S5. FTIR spectra of the copolymers of $\mathrm{P} 3 \mathrm{M}_{\mathrm{Z}} \mathrm{Hex}$ and $\mathrm{P} 3 \mathrm{H}_{\mathrm{Z}} \mathrm{Hex}$ series $(\mathrm{A}), \mathrm{P} 2 \mathrm{M}_{\mathrm{Z}} \mathrm{Hex}$ and $\mathrm{P}_{2} \mathrm{H}_{\mathrm{Z}} \mathrm{Hex}$ series (B), as well as $\mathrm{PBrM}_{\mathrm{Z}} \mathrm{Hex}$ and $\mathrm{PBrH}_{\mathrm{Z}} \mathrm{Hex}$ series (C).

TGA analysis. TGA data indicated the overall similar behavior of all polymers in the temperature range below $200^{\circ} \mathrm{C}$, i.e. phenol-containing polymers showed an initial small loss of mass upon heating up to $\sim 100{ }^{\circ} \mathrm{C}$, and retained their mass when further heated to $200^{\circ} \mathrm{C}$. Specifically, for homopolymers, the mass loss due to dehydration was $\sim 2,5,7$ and 10% for $\mathrm{PHex}, \mathrm{PBrH}_{100}, \mathrm{P}_{2} \mathrm{H}_{100}$, and $\mathrm{P} 3 \mathrm{H}_{100}$, respectively. Heating to temperatures significantly higher than $150{ }^{\circ} \mathrm{C}$ revealed dramatic differences in the thermal behavior of phenol-containing and phenol-free polymers, as shown in Fig. S6. In particular, phenol-free hexyl homopolymer demonstrated a single wide decomposition step with an onset temperature at $210^{\circ} \mathrm{C}$, with the fastest decomposition between
$390^{\circ} \mathrm{C}$ and $410^{\circ} \mathrm{C}$. In contrast, all phenolic copolymers showed two-step decomposition profiles. The first step in the temperature range between 250 and $300{ }^{\circ} \mathrm{C}$, also seen for phenolic homopolymers, most likely corresponds to crosslinking/decomposition that involves polyphenolic rings. The mass loss of phenolic homopolymers lacked this high-temperature decomposition peak, but instead showed a continuous and gradual mass loss at temperatures between 200 and $500^{\circ} \mathrm{C}$, leaving behind high percentage ($42 \%-55 \%$) of solid residues after heating to $500^{\circ} \mathrm{C}$.

Fig. S6. TGA analysis of $\mathrm{P} 2 \mathrm{H}_{\mathrm{Z}} \mathrm{Hex}(\mathrm{A})$ and $\mathrm{P} 3 \mathrm{H}_{Z} \mathrm{Hex}(\mathrm{B})$ polymer series.

