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Tables S1-S3. Specific amounts of monomers and deprotecting agents used for synthesis of

antioxidant polymers of targeted compositions.

Table S1. P2H;Hex series and PHex

Polymerization Deprotection reaction
Targeted
molar -
content, °© . o 2M BBr;
" o Yield (%) | Polymer in CH,CL,
N-hexyl N-(3,4-dimethoxybenzyl)
methacrylamide methacrylamide
(1) ©)

0 194 ¢ - 88 - -
5 1.84 ¢ 0.135¢g 83 0.500g  0.300 mL
10 1.75 ¢ 0270 g 83 0.509g  0.500 mL
15 1.65¢g 0.405 g 77 0.520g  0.700 mL
100 - 270¢g 73 0.680g  4.50mL
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Table S2. PBrH;Hex series

Polymerization

Deprotection reaction

X

NH

Targeted Br
molar -
content, °© . o 2M BBr;
o o Yield (%) | Polymer in CH,CL,
N-hexyl N-(3,4-dimethoxy-5-
methacrylamide bromobenzyl) methacrylamide
1) (6)

5 1.84 ¢ 0.180 g 75 0.500g  0.300 mL

10 1.75 g 0361 g 73 0.532g  0.500 mL

15 1.65¢g 0541 ¢g 68 0.550 g  0.700 mL
100 - 360 g 59 0910 ¢ 4.50 mL

Table S3. P3H Hex series
Polymerization Deprotection reaction
(X\IH | Oj\/NH
Targeted o
molar -
content, © - 14 (0 2M BBr;
o, o Yield (%) | Polymer in CH,Cl,
N-hexyl N-(3.4,5-trimethoxybenzyl)
methacrylamide methacrylamide
)] )

5 1.84 ¢ 0.152 g 81 0.503g  0.400 mL

10 1.75¢g 0.307 g 79 0.517g  0.700 mL

15 1.65¢g 0457 g 82 0.530 g 1.00 mL
100 - 3.04¢g 76 0.770 g 6.50 mL
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Fig. S1. The number-average molecular weight M,, (A) and molar mass dispersities (B) as a

function of polymerization time during synthesis of P2M;oHex, PBrM ¢gHex, or P3M;oHex at

80°C.
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Fig. S2. GPC traces of PHex (A), P2M,(Hex (B), PBrM;(Hex (C) for different polymerization

times, as well as M,, (D) and molar mass dispersities (E) as a function of monomer conversion

during polymerization of PHex homopolymer and copolymers containing 10% of phenolic

precursor groups at 70°C.
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Fig. S3. FTIR spectra of protected and deprotected P3M (o and P3H;o9 homopolymers (A),
P3M;sHex and P3H;sHex copolymers (B, top) and PHex control polymer (B, bottom).
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Fig. S4. FTIR spectra of protected and deprotected homopolymers: P2M; o, and P2H ¢, (A), and
PBerOO and PBI‘HlOO (B)
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Fig. SS. FTIR spectra of the copolymers of P3M Hex and P3H;Hex series (A), P2M Hex and
P2H;Hex series (B), as well as PBrMzHex and PBrHzHex series (C).

TGA analysis. TGA data indicated the overall similar behavior of all polymers in the temperature

range below 200 °C, i.e. phenol-containing polymers showed an initial small loss of mass upon
heating up to ~100 °C, and retained their mass when further heated to 200°C. Specifically, for
homopolymers, the mass loss due to dehydration was ~2, 5, 7 and 10% for PHex, PBrH 9, P2H o,
and P3H,(, respectively. Heating to temperatures significantly higher than 150 °C revealed
dramatic differences in the thermal behavior of phenol-containing and phenol-free polymers, as
shown in Fig. S6. In particular, phenol-free hexyl homopolymer demonstrated a single wide

decomposition step with an onset temperature at 210°C, with the fastest decomposition between



390 °C and 410 °C. In contrast, all phenolic copolymers showed two-step decomposition profiles.
The first step in the temperature range between 250 and 300 °C, also seen for phenolic
homopolymers, most likely corresponds to crosslinking/decomposition that involves polyphenolic
rings. The mass loss of phenolic homopolymers lacked this high-temperature decomposition peak,
but instead showed a continuous and gradual mass loss at temperatures between 200 and 500 °C,

leaving behind high percentage (42% - 55%) of solid residues after heating to 500 °C.
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Fig. S6. TGA analysis of P2H;Hex (A) and P3HzHex (B) polymer series.



