Electronic Supplementary Information

Synthesis and Properties of poly(trifluoroethylene) via a persistent radical mediated polymerization of trifluoroethylene

Maxime Colpaert,^a Sanjib Banerjee,*,^{a,#} Vincent Ladmiral,^a Taizo Ono^b and Bruno

Ameduri*,a

^aIngénierie et Architectures Macromoléculaires, Institut Charles Gerhardt, UMR 5253 CNRS,

UM, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

^bNational Institute of Advanced Industrial Science and Technology, 2266-98, Anagahora,

Shimoshidami, Moriyama, Nagoya, Aichi 463-8560, Japan

[#]Present address: Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur 492015, Chattisgarh, India

*E-mail: bruno.ameduri@enscm.fr (B.A.).

*E-mail: sanjib.banerjee@iitbhilai.ac.in (S.B.).

Contents:

Figure S1. Pictures of the Carius tubes containing PTrFE samples and PTrFE filmsS3
Figure S2. Evolution of selected ¹⁹ F NMR signals of PTrFES4
Figure S3. ¹ H NMR spectrum of CF ₃ -PTrFE-CF ₃ homopolymer (P2 , Table 1)S5
Figure S4. ¹⁹ F NMR spectrum of CF ₃ -PTrFE-CF ₃ homopolymer (P2 , Table 1)S6
Figure S5. ¹ H NMR spectrum of CF ₃ -PTrFE-CF ₃ homopolymer (P3 , Table 1)S7
Figure S6. ¹⁹ F NMR spectrum of CF ₃ -PTrFE-CF ₃ homopolymer (P3 , Table 1)S8
Figure S7. ¹ H NMR spectrum of CF ₃ -PTrFE-CF ₃ homopolymer (P4 , Table 1)S9
Figure S8. ¹⁹ F NMR spectrum of CF ₃ -PTrFE-CF ₃ homopolymer (P4 , Table 1)S10
Figure S9. ATR-IR spectra PTrFE samples
Figure S10. Expansion of negative ion MALDI-TOF mass spectrum of PTrFES12

Fig. S1 A) Pictures of four Carius tubes containing PTrFE samples at the end of the free radical homopolymerization of TrFE initiated by 'CF₃ radical from PPFR in 1,1,1,3,3-pentafluorbutane at 83 °C (**P1-P4**, Table 1). B) PTrFE film obtained after purification and casting (**P2**, Table 1)

Fig. S2 Evolution of expansion of -73 to -85 ppm zone in the ¹⁹F NMR spectra of PTrFE prepared by free radical homopolymerization of TrFE initiated by \cdot CF₃ radical from PPFR in PFB at 83 °C (**P1-P4**, Table 1). The spectra were recorded in acetone-*d*₆.

Fig. S3 ¹H NMR spectrum of CF₃-PTrFE-CF₃ homopolymer prepared by radical polymerization of TrFE initiated by PPFR at 83 °C (**P2**, Table 1), recorded in acetone- d_6 at 20 °C. The signals at 2.05 and 2.84 ppm are assigned to acetone and water, respectively.

Fig. S4 ¹⁹F{¹H} NMR spectrum of CF₃-PTrFE-CF₃ homopolymer prepared by radical polymerization of TrFE initiated by PPFR at 83 °C (**P2**, Table 1), recorded in acetone- d_6 at 20 °C. The expansion in the -118 to -129 ppm range indicates the AB system from the geminal - CF_2 - fluorines in a meso stereochemical dyad.

Fig. S5 ¹H NMR spectrum of CF₃-PTrFE-CF₃ homopolymer prepared by radical polymerization of TrFE initiated by PPFR at 83 °C (**P3**, Table 1), recorded in acetone- d_6 at 20 °C. The signals at 2.05 and 2.84 ppm represent acetone and water, respectively.

Fig. S6 ¹⁹F{¹H} NMR spectrum of CF₃-PTrFE-CF₃ homopolymer prepared by radical polymerization of TrFE initiated by PPFR at 83 °C (**P3**, Table 1), recorded in acetone- d_6 at 20 °C. The expansion in the -118 to -129 ppm range indicates the AB system from the geminal - CF_2 - fluorines in a meso stereochemical dyad.

Fig. S7 ¹H NMR spectrum of CF₃-PTrFE-CF₃ homopolymer prepared by radical polymerization of TrFE initiated by PPFR at 83 °C (**P4**, Table 1), recorded in acetone- d_6 at 20 °C. The signals at 2.05 and 2.84 ppm represent acetone and water, respectively.

Fig. S8 ¹⁹F{¹H} NMR spectrum of CF₃-PTrFE-CF₃ homopolymer prepared by radical polymerization of TrFE initiated by PPFR at 83 °C (**P4**, Table 1), recorded in acetone- d_6 at 20 °C. The expansion in the -118 to -129 ppm range indicates the AB system from the geminal - CF₂- fluorines in a meso stereochemical dyad.

Fig. S9 ATR-IR spectra of PTrFE prepared by free radical homopolymerization of TrFE initiated by •CF₃ radical from PPFR in PFB at 83 °C (**P1-P4**, Table 1).

Fig. S10 Magnification of negative ion MALDI-TOF mass spectrum of PTrFE homopolymer prepared by radical polymerization of TrFE initiated by PPFR at 83 °C (**P4**, Table 1), with DCTB as matrix and LiCl as cationic agent. $2063 = (24 \times 82) + 69 + 19 + 7$ (Li+), the interpeak distance of m/z = 82 corresponds to the mass of the TrFE repeat unit.