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1-Experimental Sections

1.1-General procedure for the synthesis of TPEs

In a typical procedure, 2,5-FDA (1.3 eq) was dissolved in THF (0.6 M). The 
solution was purged with nitrogen for 30 mins to remove oxygen. Thereafter, 1,3-
propanedithiol (1 eq) was added via a syringe. The reaction mixture was cooled in an ice-
bath. Then DMPP (0.005 eq) was added to the mixture to start the polymerization process. 
The reaction was carried out at room temperature for 15 mins. DL-dithiothreitol (0.3 eq) 
previously dissolved in THF was then added to the solution. The reaction was conducted 
for another 25 mins. Poly (β-thioether ester) was precipitated in cold hexane and 
recovered by filtration. Finally, the polymer was kept in a vacuum oven at room 
temperature overnight to remove residual solvent.

1.2-Diels-Alder reaction to crosslink TPEs

Bismaleimide was used to crosslink 2,5-FDA based TPEs. A typical procedure is 
described as follows: 2,5-FDA based TPEs (0.5 g) were first dissolved in chloroform (3 
mL), then bismaleimide (50 mg) was added. After TPEs and crosslinkers were dissolved 
completely, the solution was degassed and poured into a Teflon mold and sealed for 24 h 
to enable the DA reaction to occur. The solvent was completely evaporated in a vacuum 
oven at 40 oC for 24 h. The films were held at room temperature for at least 24 h before 
analysis.

2-Results and Discussions

2.1 Figures
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Figure S1. 1H NMR spectra of poly(β-thioether ester) synthesized from A) DL-
dithiothreitol (92 % yield); B) 1,4-benzenedithiol (90 % yield)

Signals (a, b) from δ= 5.0 ppm to 6.5 ppm belonged to the furan protons and 
methylene protons next to the furan rings. Signals at δ= 2.5 ppm to 3.0 ppm (c, d and e) 
represented the resonance from the methylene protons between the ester groups and the 
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thioether, and the protons adjacent to the thioether groups, respectively (Figure S1A, 
DMSO-d6). Moreover, two signals were observed at δ = 3.5-3.6 ppm (f) and 4.6-4.8 ppm 
(g), being assigned to the protons of the hydroxyl groups and the protons next to the 
hydroxyl groups (POF). The signal from the protons of the benzene rings was observed at 
δ = 7.2-7.3 ppm (e, Figure S1B, CDCl3, PBF).
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Figure S2. 13C NMR spectra of poly(β-thioether ester) synthesized from A) 1,3-
propanedithiol; B) dithiothreitol; C) 1,4-benzenedithiol
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Figure S3. FTIR spectra of poly(β-thioether ester) synthesized from a) 1,3-propanedithiol; 
b) dithiothreitol; c) 1,4-benzenedithiol

The ATR-FTIR spectra of different poly(β-thioether ester) are presented in Figure S3. 
Characteristic bands, including C-H stretching vibrations at 3135 cm-1, the C=C ring 
stretching vibrations at 1565 cm-1 and the ring vibration of the =C-O-C= groups at 1150 
cm-1, were assigned to the furan rings. Carbonyl C=O stretching vibrations were observed 
at around 1730 cm-1. The bands at 2910−2950 and 2850−2860 cm−1 were attributed to the 
asymmetric and symmetric stretching vibrations of the CH2 groups, respectively.
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Figure S4. A) 5-methylfurfural generated at 250 oC and B) 1,6-hexanedithiol generated 
at 300 oC
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Figure S5. DSC curves of poly(β-thioether ester) synthesized from A) 1,3-propanedithiol; 
B) dithiothreitol; C) 1,4-benzenedithiol measured from -60 to 120 oC at a heating rate of 
10 oC/min, a cooling rate of 5 oC/min
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Figure S6. (A, B, C and D) DSC curves of copoly(β-thioether ester) with varying 
monomer ratios; (E) Tg evolution of copoly(β-thioether ester) with varying benzene 
dithiol monomers. (Ratio 1:4 = the molar ratio of HS to BS)
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Figure S7. TGA curves of copoly(β-thioether ester) with different HS/BS feed ratios
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Figure S8. (A) 1H NMR spectra of DA reaction between BHF and bismaleimide at room 
temperature (the molar ratio of BHF to bismaleimide=2:1, CDCl3 as solvent with a small 
amount of DMSO-d6); (B) Furan or maleimide conversion as a function of time; (C) 
Furan conversion versus reaction time at 25 oC and 40 oC, respectively

Figure S9. 1H NMR spectra recorded at 110 °C in DMSO-d6 for the retro DA reaction of 
furan-bearing poly(β-thiother ester) and bismaleimide
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Figure S10. (A) Strain-stress curves of crosslinked films (PHF/M 2:1) and film after 
compression molding; (B) FTIR of films before and after reprocessing; (C) DSC curve of 
crosslinked polymers (PHF/M 10:1)

Figure S11. SEM observations of film before (A) and after (B) reprocessing. 
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The ATR-FTIR spectra of TPEs are presented in Figure S12. Characteristic bands, 
such as C-H stretching vibrations at 3135 cm-1 and the ring vibration of the =C-O-C= 
groups at 1150 cm-1, were assigned to the furan rings. Carbonyl C=O stretching 
vibrations were observed at around 1730 cm-1. The bands at 2910−2950 and 2850−2860 
cm−1 were assigned to the asymmetric and symmetric stretching vibrations of the CH2 
groups, respectively. Furthermore, a broad O-H stretching absorption band (3400 cm-1) 
was observed in all samples. While the presence of interactions between carbonyl groups 
and the hydroxyl groups leading to the shift of carbonyl stretching vibrations to a lower 
wavenumber has been observed in the POF, this observation was not confirmed here 
probably due to the low intensity of the shifted signal.



13

-80 -60 -40 -20 0 20 40 60 80 100 120

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

H
ea

t F
lo

w
 (W

/g
)

Temperature (oC)

 First heating
 Cooling
 Second heating

A

-80 -60 -40 -20 0 20 40 60 80 100 120
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

H
ea

t F
lo

w
 (W

/g
)

Temperature (oC)

First heating

Second heating

Cooling

B

-80 -60 -40 -20 0 20 40 60 80 100 120

-0.6

-0.4

-0.2

0.0

0.2

H
ea

t F
lo

w
 (W

/g
)

Temperature (oC)

First heating

Second heating

Cooling

C

-80 -60 -40 -20 0 20 40 60 80 100 120

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

H
ea

t F
lo

w
 (W

/g
)

Temperature (oC)

First Heating

Second heating

Cooling

D

-80 -60 -40 -20 0 20 40 60 80 100 120
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

H
ea

t F
lo

w
 (W

/g
)

Temperature (oC)

First heating

Second heating

Cooling

E

Figure S13. DSC curves of TPEs P1 (A), P2 (B), P3 (C), P4 (D) and P5 (E) synthesized 
from bio-based furan via thiol-Michael addition polymerization. Measured at a heating 
rate of 10 oC/min, a cooling rate of 5 oC/min 
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Figure S14. TGA curves of TPEs P1 (A), P2 (B), P3 (C), P4 (D), P5 (E)
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Figure S16. (A) FTIR of P2 and crosslinked P2-1 via Diels-Alder reaction (weight ratio 
of P2 to crosslinker = 10:1); (B) carbonyl peak regions 

2.2 Tables

Table S1. GPC results of poly(β-thioether ester) prepared via different stoichiometric 
conditions

Acrylate: Thiolsa Mn (g/mol)b PDI
1.2:1 3466 2.8
1.1:1 14806 1.9
1:1 21834 2.0

1:1.1 10008 2.0
1:1.2 2803 2.1

a The ratio of 2,5-FDA and 1,3-propanedithiol. b Polystyrene as standard. 
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Table S2. Composition, thermal properties and molecular weights of synthesized 
copoly(β-thioether esters)

1H 
NMR GPC DSC TGA

First Heating Second 
Heating

Polymers

1H 
NMR 
HS/BS 
ratio 

(mol%)

Molecular 
weight 

(Mn*103 
g/mol)a

PDI Tg 
(oC)b Tm (oC) f Tg 

(oC)

Tm 
(oC) 

d

T5%(oC)c, 
Tmax (oC)e

PHFj 5/0 19.5 2.0 # 56.1/77.4 -
36.9

# 236, 249/285

PHF/PBF-
4:1

4.2/0.8 14.7 1.7 -27.1 54.0/69.5 -
30.1

# 249, 254/291

PHF/PBF-
3:2

3.2/0.8 16.4 1.7 -20.8 47.6 -
23.2

# 243, 252/292

PHF/PBF-
2:3

1.9/3.1 17.0 1.6 -18.5 49.3/53.7 -
16.3

# 236, 247/291

PHF/PBF-
1:4

0.9/4.1 13.5 1.8 -6.4 49/56.0/77.5 -5.3 # 236, 246/289

PBF 0/5 17.8 1.9 8.0 64.0/80.6 7.9 # 242, 246/292
a Polystyrene as standard. b Glass transition temperature. c T5% indicates the 5% weight 
loss of polymers under a nitrogen atmosphere. d Melting temperature. e Tmax indicates the 
temperature of maximal rate of decompositions. f Multiple melting temperature. # = not 
detected. j Polymers synthesized from 1,6-hexanedithiols.6b

Table S3. Polymerization conditions and molecular weights of TPEs

Sample
s P/Da P/Db Mn 

(kg/mol)c PDI Tg 
(oC)d

T5%(oC)e, 
Tmax(oC)f

P1 10/3 10/3.1 20.5 2.0 -22.0 245, 249/282
P2 10/4 10/3.8 19.2 2.1 -20.1 242, 247/280
P3 10/5 10/4.8 16.9 2.0 -19.1 242, 246/277
P4 10/5 10/4.5 13.0 2.3 -22.6 242, 247/280
P5 10/7 10/6.2 13.9 2.6 -16.1 238, 242/277

a The feeding molar ratio of 1,3-propanedithiol to dithiothreitol. b The molar ratio of 1,3-
propanedithiol to dithiothreitol determined via 1H NMR spectra. c The number average 
molecular weight and PDI (Mw/Mn) determined by GPC calibrated with polystyrene. d 
Glass transition temperature. e T5% indicates the 5% weight loss of polymers under a 
nitrogen atmosphere. f Tmax indicates the temperature of maximal rate of decompositions.
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2.3 Schemes
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Thiol-Michael Addition Polymerization

Scheme S1. Synthesis of copoly(β-thioether ester) via the thiol-Michael addition 
polymerization


