Supporting Information

Metallic organophosphates catalyzed bulk ring-opening polymerizations

Siming Chen, Haixin Wang, Zhenjiang Li, Fulan Wei, Hui Zhu, Songquan Xu, Jiaxi Xu, Jingjing Liu, Hailemariam Gebru, Kai Guo*

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China. Tel.: +86 25 5813 9926.

E-mail: guok@njtech.edu.cn; zjli@njtech.edu.cn.

Contents

¹ H NMR spectrum of magnesium diphenyl phosphate	S1
¹³ C NMR spectrum of magnesium diphenyl phosphate	S1
³¹ P NMR spectrum of magnesium diphenyl phosphate	S2
Bulk ring-opening polymerization of trimethylene carbonate with various ratios of [I]/[C]	S2
Bulk ring-opening polymerization of δ -valerolactone	S 3
¹ H NMR spectrum of poly(δ -valerolactone)	S3
¹³ C NMR spectrum of poly(δ -valerolactone)	S4
MALDI-TOF mass spectra of poly(δ -valerolactone)	S4
SEC traces of poly(δ -valerolactone)s	S5
¹ H NMR spectrum of polylactide	S5
¹³ C NMR spectrum of polylactide	S6
MALDI-TOF mass spectra of polylactide	S6
¹ H NMR spectrum of poly(trimethylene carbonate)- <i>block</i> -poly(δ -valerolactone)	S7
¹³ C NMR spectrum of poly(trimethylene carbonate)- <i>block</i> -poly(δ -valerolactone)	S7
Turnover frequency of different catalysts in the ROP of TMC	S8
References	S8

Figure S2 ¹³C NMR spectrum of magnesium diphenyl phosphate in d_6 -DMSO at room temperature.

Figure S3 ³¹P NMR spectrum of magnesium diphenyl phosphate in d_6 -DMSO at room temperature.

	Entry [I]_/[C]_		Time	Conv. ^b	$M_{ m n, theo}{}^{c}$	$M_{n, NMR}^{b}$	$M_{n, SEC}^{d}$	$M_{\rm w}/M_{\rm n}{}^d$	
Littiy	[I] ₀ /[C] ₀	(h)	(%)	(kg mol ^{−1})	(kg mol ⁻¹)	(kg mol ⁻¹)			
	1	1/0	18	0	-	-	-	-	
	2	1/0.25	18	36	1.24	1.55	1.62	1.22	
	3	1/0.5	18	63	2.06	2.26	2.38	1.18	
	4	1/0.75	18	82	2.65	2.95	3.30	1.17	
	5	1/1	18	96	3.07	3.27	3.56	1.17	

Table S1 Bulk ring-opening polymerization of trimethylene carbonate with various ratios of [I]/[C] ^a.

^{*a*} Using MgDP as catalyst and PPA as initiator; keeping $[M]_0/[I]_0 = 30$; polymerizations were conducted at 60 °C. ^{*b*} Determined by ¹H NMR spectroscopy in CDCl₃. ^{*c*} Calculated from ($[TMC]_0/[PPA]_0$) × conv. × (M_w of TMC) + (M_w of PPA). ^{*d*} Determined by SEC in THF using PSt standards.

Entry	Monomor	Catalyst	[NA] /[1]	Time	Conv. ^b	$b M_{n, \text{theo}} c M_{n, \text{NMR}} M_{n, \text{SEC}} d$	NA INA d		
Entry		[IAI] ⁰ / [1] ⁰	(h)	(%)	(kg mol ^{−1})	(kg mol ⁻¹)	(kg mol ^{−1})	<i>wi_w/wi_n</i> *	
1	δ -VL	MgDP	30	20	97	3.10	3.30	3.90	1.27
2	δ -VL	MgDP	60	38	96	6.00	6.20	6.70	1.26
3	δ -VL	MgDP	90	66	94	8.70	9.00	9.20	1.23
4	δ -VL	MgDP	120	82	92	11.2	11.6	12.0	1.23

Table S2 Bulk ring-opening polymerization of δ -valerolactone using magnesium diphenyl phosphate as catalyst and 3-phenyl-1-propnal as initiator ^{*a*}.

^{*a*} Keeping $[I]_0/[C]_0 = 1$; polymerizations were conducted at 90 °C. ^{*b*} Determined by ¹H NMR spectroscopy in CDCl₃. ^{*c*} Calculated from $([\delta-VL]_0/[PPA]_0) \times \text{conv.} \times (M_w \text{ of } \delta-VL) + (M_w \text{ of PPA})$. ^{*d*} Determined by SEC in THF using PSt standards.

Figure S4 ¹H NMR spectrum of poly(δ -valerolactone) in CDCl₃ at room temperature.

Figure S5 ¹³C NMR spectrum of the poly(δ -valerolactone) in CDCl₃ at room temperature.

Mass = [Initiator] + [Monomer] × *n* + [Na⁺]

Figure S6 MALDI-TOF MS spectrum of poly(δ -valerolactone) ([δ -VL]₀/[MgDP]₀/[PPA]₀ = 30/1/1, 90 °C, conversion = 97%, $M_{n, NMR} = 3.10 \text{ kg mol}^{-1}$, $M_w/M_n = 1.27$)

Figure S7 (A) SEC traces of poly(δ -valerolactone)s with various monomer/initiator ratios; (B) SEC traces of first poly(δ -valerolactone) sequence (solid line) and post polymerization (dash line). (Eluent = THF; flow rate = 0.7 mL min⁻¹)

Figure S8 ¹H NMR spectrum of the polylactide in CDCl₃ at room temperature.

Figure S9 ¹³C NMR spectrum of polylactide in CDCl₃ at room temperature.

Figure S10 MALDI-TOF MS spectrum of polylactide ([LA]₀/[MgDP]₀/[PPA]₀ = 30/1/1, 140 °C, conversion = 97%, $M_{n, NMR}$ = 4.62 kg mol⁻¹, M_w/M_n = 1.43)

Figure S11 ¹H NMR spectrum of the obtaine poly(trimethylene carbonate)-*block*-poly(δ -valerolactone) in CDCl₃ at room temperature.

Figure S12 ¹³C NMR spectrum of poly(trimethylene carbonate)-*block*-poly(δ -valerolactone) in CDCl₃ at room temperature

 Table S3 Turnover frequency (TOF) of different catalysts in the ROP of TMC

$\Gamma OF(h^{-1})$	$= \frac{[IM]_0 \times}{[Cat.]_0 \times \text{ polyment}}$	rization time (h)	
	Catalyst	TOF (h ⁻¹)	Conditions
	MgDP	1.58	[M] ₀ /[I] ₀ /[C] ₀ =30/1/1, 60 °C, in bulk
	DPP ¹	48.94	[M] ₀ /[l] ₀ /[C] ₀ =25/1/0.05, 80 °C, in bulk

Reference

1. T. Saito, Y. Aizawa, K. Tajima, T. Isono and T. Satoh, *Polym. Chem.*, 2015, **6**, 4374-4384.