Supporting Information

Ultrasmall few-layered MoS₂ nanosheets anchored on flower-like hierarchical carbon as a long-life electrode for lithium storage

Xiongwei Wang¹, Ludan Zhang², Peiyi Wu^{1*}

¹State Key Laboratory of Molecular Engineering of Polymers, Department of

Macromolecular Science, Fudan University, Shanghai 200433, China

²Department of Chemistry, Laboratory for Advanced Materials, Fudan University, Shanghai

200438, P. R. China

E-mail: peiyiwu@fudan.edu.cn

Fig. S1 TEM images of ZnO (a) and ZnO@HTC carbon (b)

Fig. S2 SEM images of ZnO@HTC carbon prepared by hydrothermal treatment of the mixture with different ratio of ZnO to glucose: (a,b) 1:1, (c) 1:1.5, (d) 1:2, (e) 1:2.5

Fig. S3 SEM images (a,b) and TEM image (c) of bare MoS_2 nanosphere

Fig. S4 Energy dispersive X-ray spectroscopy (EDX) of FC-22MoS $_2$ hybrid

Fig.S5 High-resolution TEM images of FC-22MoS₂ hybrid

Fig. S6 SEM images (a,b) and TEM images (c,d) of FC-10MoS₂ hybrid

Fig. S7 SEM images (a,b) and TEM images (c,d) of FC-40MoS₂ hybrid

Sample ID	Sample mass (mg)	Concentration of Mo element (250 ml) (mg/L)	MoS ₂ percentage (wt%)
FC-10MoS ₂	30.3	23.1	31.8
FC-22MoS ₂	30.0	35.6	49.4
FC-40MoS ₂	31.5	45.5	60.1

Table S1. MoS_2 percentage in FC-MoS₂ hybrids measured by ICP

Fig. S8 TGA curves of pure FC, bare MoS_2 nanosphere, FC-10 MoS_2 , FC-22 MoS_2 and FC-40 MoS_2

Fig. S9 Discharge-charge profiles of 1 st, 2 nd, 10^{th} and 50^{th} cycle of bare MoS₂ NPs.

Fig. S10 FESEM images of the FC-22MoS₂ anode after 50 cycles at 200 mA g^{-1} .

Fig. S11 (a) LSV polarization curves of FC, MoS₂ NPs, FC-10MoS₂, FC-22MoS₂ and FC-40MoS₂ hybrids and (b) corresponding Tafel curves.

Fig. S12 Cyclic voltammograms of $MoS_2 NPs$ (a), FC-10 MoS_2 (b), FC-22 MoS_2 (c) and FC-40 MoS_2 (d) modified GCE at various scan rates from 10 to 50 mV s⁻¹. (e) Linear fitting for the capacitive current Δ_J at 0.15 V vs scan rates.

Table S2. Summary of representative MoS_2 based nanocomposites for HER performance in acidic media

Typical examples	Onset potential (mV)	Tafel slope (mV/dec)	Reference
MoS ₂ /3D flower-like carbon	~110	65	This work
MoS ₂ /carbon nanofiber foam	~120	44	[1]
MoS ₂ /graphene aerogel	107	86.3	[2]
MoS ₂ nanosheets/CNTs	90	44.6	[3]
MoS ₂ nanoflowers/rGO paper	~190	95	[4]
MoS ₂ /N-doped carbon nanofiber	108	61	[5]
MoS ₂ /nanoporous metal	125	41	[6]
MoS ₂ /N-doped graphene	~115	45	[7]
MoS ₂ /N-doped carbon nanoboxes	~100	55	[8]
MoS ₂ /graphene	~130	41	[9]

Fig. S13 HER polarization curves before and after 1000 cycles for FC-22MoS₂.

Fig. S14 AC impedance spectroscopy of MoS₂ NPs and FC-22MoS₂ hybrid at an overpotential of 0.35 V.

Reference

- Guo, X.; Cao, G.-l.; Ding, F.; Li, X.; Zhen, S.; Xue, Y.-f.; Yan, Y.-m.; Liu, T.; Sun, K.-n., J. Mater. Chem. A, 2015, 3, 5041-5046.
- Zhou, W.; Zhou, K.; Hou, D.; Liu, X.; Li, G.; Sang, Y.; Liu, H.; Li, L.; Chen, S., ACS Appl. Mater. Interfaces, 2014, 6, 21534-21540.
- Yan, Y.; Ge, X.; Liu, Z.; Wang, J.-Y.; Lee, J.-M.; Wang, X., Nanoscale, 2013, 5, 7768-7771.
- Ma, C.-B.; Qi, X.; Chen, B.; Bao, S.; Yin, Z.; Wu, X.-J.; Luo, Z.; Wei, J.; Zhang, H.-L.; Zhang, H., Nanoscale, 2014, 6, 5624-5629.
- Lai, F.; Miao, Y.-E.; Huang, Y.; Zhang, Y.; Liu, T., ACS Appl. Mater. Interfaces, 2015, 8, 3558-3566.
- Ge, X.; Chen, L.; Zhang, L.; Wen, Y.; Hirata, A.; Chen, M., Adv. Mater., 2014, 26, 3100-3104.
- Dai, X.; Li, Z.; Du, K.; Sun, H.; Yang, Y.; Zhang, X.; Ma, X.; Wang, J., Electrochim. Acta, 2015, 171, 72-80.
- Yu, X.-Y.; Hu, H.; Wang, Y.; Chen, H.; Lou, X. W., Angew. Chem. Int. Ed., 2015, 54, 7395-7398.
- Zheng, X.; Xu, J.; Yan, K.; Wang, H.; Wang, Z.; Yang, S., Chem. Mater., 2014, 26, 2344-2353.