Supplementary Information

Porous hollow MoS₂ microspheres derived from core-shell sulfonated

polystyrene microspheres@MoS₂ nanosheets for efficient

electrocatalytic hydrogen evolution

Jun-Dong Yi,^{a,b} Peng-Chao Shi,^a Jun Liang,^a Min-Na Cao,^a Yuan-Biao Huang^{*,a} Rong

Cao*,a

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

E-mail: ybhuang@fjirsm.ac.cn, rcao@fjirsm.ac.cn, Fax: (+86)-591-83796710, Tel: (+86)-591-83796710.

^b University of the Chinese Academy of Sciences, Beijing, China.

Fig. S1 SEM image of SPS@MoS₂ (180 °C / 3hours)

Fig. S2 TEM image of SPS@MoS₂ (180 °C / 12 hours)

Fig. S3 TG curves of SPS microspheres under Ar atmosphere.

Fig. S4 TG curves of hollow MoS_2 microspheres under air atmosphere

Fig. S5 N_2 adsorption isotherms curve of SPS@MoS₂

Fig. S6 SEM image of SPS

Fig. S7 SEM image of pure MoS₂

Fig. S8 SEM image of PS/MoS_2 using PS microspheres as templates at 180 °C for 6 h.

Fig S9 Nyquist plots of different samples over the frequency range from 1000 kHz to 10 mHz at the open-circuit voltage with an AC voltage of 5 mV.

Table S1 R _{ct} values	of different sample	les.
---------------------------------	---------------------	------

Samples	R _{ct} (ohm)
HMMs	121.4
SPS@MoS ₂	365.6
Pure MoS ₂	910.7

Fig. S10 CVs in the region from -0.2 to 0.2 V vs. Ag/AgCl for pure MoS₂ (a) and hollow MoS₂ microspheres (b). The electrochemical double-layer capacitance was determined from the CV curves measured in a potential range without redox processes according to the following equation: Cdl = Ic / v, where Cdl, Ic, and v are the double-layer capacitance (F cm⁻²) of the electroactive materials, charging current (mA cm⁻²), and scan rate (mV s⁻¹), respectively.