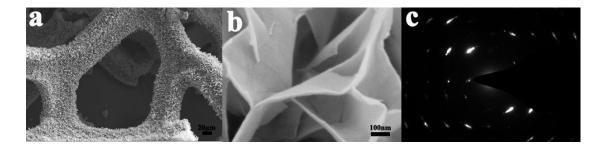
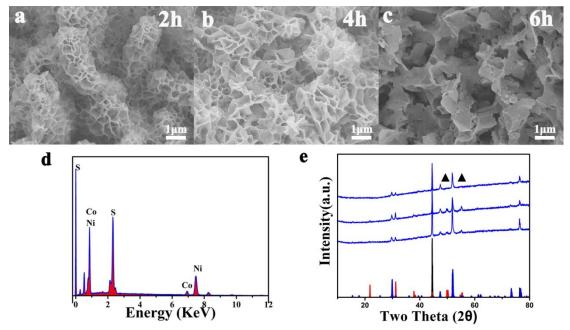
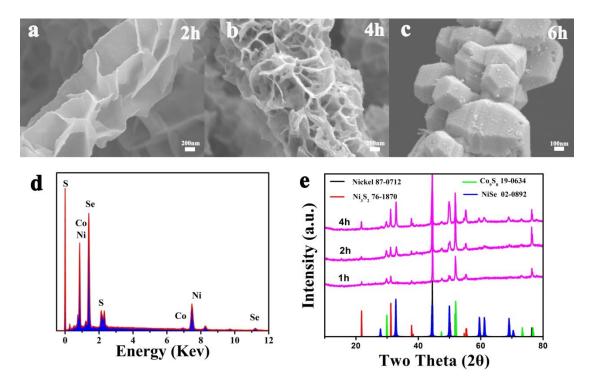
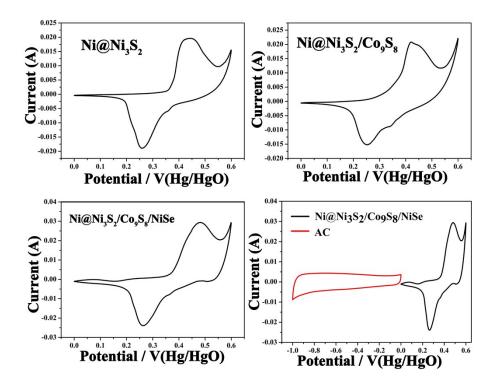
Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information

Sequential Partial Ion Exchange Synthesis of Composite $Ni_3S_2/Co_9S_8/NiSe$ Nanoarrays with Lavender-like Hierarchical Morphology

Shaobo Huang,^a Wangxi Zhang,^a Shizhong Cui,^a Weihua Chen^{b,*} and Liwei Mi ^{a,*}


Figure S1. (a) Low-magnification skeleton of Ni@Ni $_3$ S $_2$ (b) the high magnification of nanoflakes (c) SAED images of Ni@Ni $_3$ S $_2$

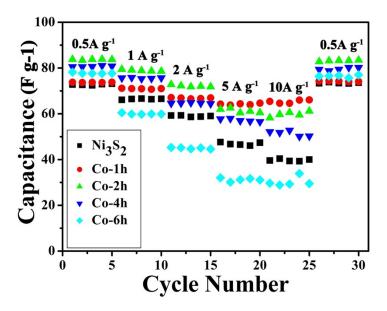

Figure S2. SEM images of Co-exchange progress at different reaction time from (a-c). (d) EDS results at the Co exchange reaction time of 2h. (e) XRD results at different reaction time.


Figure S3. SEM images of Se-exchange progress at different reaction time from (a-c). (d) EDS results at the Se exchange reaction time of 2h. (e) XRD results at different Se exchange reaction time.

Figure S4. CV curves of (a) Ni@Ni $_3$ S₂, (b) Ni@Ni $_3$ S₂/Co $_9$ S₈, (c) Ni@Ni $_3$ S₂/Co $_9$ S₈/NiSe at scan rates of 5 mV s⁻¹in a three-electrode (d) CV curves of Ni@Ni $_3$ S₂/Co $_9$ S₈/NiSe and AC electrodes measured at a scan rate of 5 mV s⁻¹ in a three-electrode system

Figure S5. Rate performance of under different reaction time during Co exchange progress at the different current density.

Figure S6. (a) CV curve of $Ni@Ni_3S_2$ at different scan speed. (b) CV curve of $Ni@Ni_3S_2/Co_9S_8$ at different scan speed

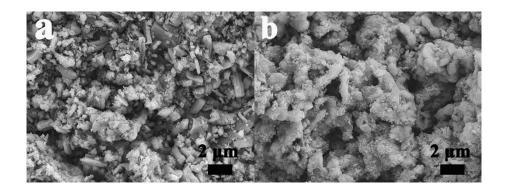


Figure S7. SEM images after 2000th cycles (a) SEM image of Ni@Ni $_3$ S $_2$ (b) SEM images of Ni@Ni $_3$ S $_2$ /Co $_9$ S $_8$ /NiSe

Table S1: Comparison of related materials about the power density at maximum energy density

Devices	Energy density	Power density	Source
Ni ₃ S ₂ //AC	17.5 Wh kg ⁻¹	301 W kg ⁻¹	Journal of Power Sources, 2016, 320 , 13-19.
Ni ₃ S ₂ @CoS//AC	28.24 Wh kg ⁻¹	134.46 W kg ⁻¹	Phys. Chem. Chem. Phys., 2015, 17 , 16434-16442.
AB-NiCo ₂ S ₄ //AC	24.7 Wh kg ⁻¹	428 W kg ⁻¹	Electrochimica Acta, 2015, 186 , 562-571.
NiCo ₂ O ₄ //AC	22.8	160	J. Mater. Chem. A, 2015, 3 , 12452-12460.
NiCo ₂ O ₄ @Ni ₃ S ₂ //AC	1.89 mW h cm ⁻³	5.81 W cm ⁻³	Nanoscale, 2016, 8 , 10686-10694.
Co3S4/NiS//AC	4.18 Wh m ⁻²	160 W m ⁻²	RSC Adv., 2016, 6 , 97482-97490.
Ni(HCO ₃) ₂ //FexCy/C	24.96 Wh kg ⁻¹	87.75 W kg ⁻¹	Electrochimica Acta, 2015, 180 , 330–338.
Ni@Ni ₃ S ₂ /Co ₉ S ₈ /NiSe //AC	31.99 Wh kg ⁻¹	105.10 W kg ⁻¹	This work