Supporting Information

Mesoporous graphene/carbon frameworks embedded with SnO₂

nanoparticles as a high-performance anode for lithium storage

Xiongwei Wang¹, Ludan Zhang², Congcong Zhang², Peiyi Wu^{1*}

¹State Key Laboratory of Molecular Engineering of Polymers, Department of

Macromolecular Science, Fudan University, Shanghai 200433, China

²Department of Chemistry, Laboratory for Advanced Materials, Fudan University,

Shanghai 200438, P. R. China

E-mail: peiyiwu@fudan.edu.cn

Fig. S1 TEM image of the graphene@Fe₃O₄@C composite

Fig. S2 Photographs of the magnetism change of the graphen@Fe₃O₄@C composite before and after acid etching.

Fig. S3 High resolution TEM image of MCF

Fig. S4 Energy dispersion X-ray (EDX) spectrum of the graphen@Fe₃O₄@C after acid etching

Fig. S5 Pore size distribution curve of MCF

Fig. S6 High-resolution XPS spectra of C 1s of GO (a) and MCF (b).

Fig. S7 SEM image of MCF@SnO₂ and corresponding EDS mapping of C, Sn and O elements

Fig. S8 Nitrogen adsorption/desorption isotherm of MCF@SnO₂, inset shows the corresponding pore size distribution curve.

Fig. S9 Discharge-charge profiles for 1st and 50th and 100th cycle of MCF@SnO₂ at a current density of 1 A g⁻¹.

Fig. S10 TEM image of the synthesized SnO_2 nanoparticles

Fig. S11 Discharge-charge profiles for 1st and 2nd cycle of SnO₂ NPs.

Fig. S12 STEM image of MCF@SnO₂ electrode after 200 cycles at 1 A $g^{-1}(a)$ and the corresponding EDX elemental mapping of C, Sn and O at the region in (a), respectively (b-d).