Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Defect Control in $Ca_{1-\delta}Ce_{\delta}Ag_{1-\delta}Sb$ ($\delta \approx 0.15$) Through

Nb Doping

Xin Li, ^a Jun-Jie Yu, ^b Yin-Tu Liu, ^b Zhen Wu, ^a Jia Guo, ^a Tie-jun Zhu, ^b Xin-bing Zhao, ^b Xu-Tang Tao ^a and Sheng-Qing Xia ^{* a}

^{a.}State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China.

^{b.}State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.

Supporting information

Contents

- **1.** Figure S1. The electronic (κ_e) and lattice (κ_l) contributions of thermal conductivity for $Ca_{0.725+x}Nb_{0.1-x}Ce_{0.15}AgSb$ (x≤0.05) and $Ca_{0.85}Ce_{0.15}Ag_{0.85}Sb$ compounds.
- 2. Figure S2. Seebeck Pisarenko plot for Ca_{0.725+x}Nb_{0.1-x}Ce_{0.15}AgSb (x≤0.05) and Ca_{0.85}Ce_{0.15}Ag_{0.85}Sb compounds. Experimental data are shown as scattered dots in different colors and the curves were calculated based on the SPB (Single Parabolic Band) model.

Figure S1. The electronic (κ_e) and lattice (κ_l) contributions of thermal conductivity for $Ca_{0.725+x}Nb_{0.1-x}Ce_{0.15}AgSb$ ($x \le 0.05$) and $Ca_{0.85}Ce_{0.15}Ag_{0.85}Sb$ compounds.

Figure S2. Seebeck Pisarenko plot for $Ca_{0.725+x}Nb_{0.1-x}Ce_{0.15}AgSb$ (x ≤ 0.05) and $Ca_{0.85}Ce_{0.15}Ag_{0.85}Sb$ compounds. Experimental data are shown as scattered dots in different colors and the curves were calculated based on the SPB (Single Parabolic Band) model.