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Table S1. Selected bond lengths (Å) and angles (°) for complexes 1 and 2. 

1  2 

Bonds Å Angles ° Bonds  Å Angles ° 

Co(1)-O(1) 1.8637(9) O(1)-Co(1)-O(2) 124.62(3) Co(1)-O(1) 1.8374(11) O(1)-Co(1)-O(2) 129.76(5) 

Co(1)-O(1A) 1.8637(9) O(1A)-Co(1)-O(2) 124.62(3) Co(1)-O(2) 1.8701(10) O(1)-Co(1)-O(3) 124.87(5) 

Co(1)-O(2) 1.8346(14) O(1)-Co(1)-O(1A) 110.77(6) Co(1)-O(3) 1.8943(11) O(2)-Co(1)-O(3) 105.27(5) 

Symmetry transformations used to generate equivalent atoms: A -x, y, -z+1/2 

Table S2. The best results fitted for 1 under 1500 Oe dc field by a generalized Debye model. 

1 

T / K τ / s α 

2.00 5.89×10-2 0.16 

2.29 1.90×10-2 0.11 

2.60 5.61×10-3 0.07 

2.90 1.91×10-3 0.05 

3.20 7.43×10-4 0.04 

3.51 3.19×10-4 0.03 

3.85 1.47×10-4 0.04 

4.13 6.66×10-5 0.06 

4.35 4.41×10-5 0.03 

 

 

Figure S1. (a) Packing arrangements of complexes 1 (a) and 2 (b). The dashed lines show the nearest 

intermolecular Co∙∙∙Co separation. Hydrogen atoms and cations are omitted for clarity. 
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Figure S2. Temperature dependence of the in-phase (χ') and out-of-phase (χ") ac susceptibility for 1 under zero 

dc field. The lines are guides to the eyes. 
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Figure S3. Temperature dependence of the in-phase (χ') and out-of-phase (χ") ac susceptibility for 2 under zero 

dc field. The lines are guides to the eyes. 
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Figure S4. Frequency dependence of the in-phase (χ') ac susceptibility for 1 at 2 K under different dc fields. The 

lines are guides to the eyes.  
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Figure S5. Frequency dependence of the out-of-phase (χ") ac susceptibility for 1 at 2 K under different dc fields. 

The lines are guides to the eyes. 
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Figure S6. Frequency dependence of the in-phase (χ') and out-of-phase (χ") ac susceptibility for 2 at 2 K under 

different dc fields. The lines are guides to the eyes. 
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Figure S7. Temperature dependence of the in-phase (χ') and out-of-phase (χ") ac susceptibility for 1 under 1500 

Oe dc field. The lines are guides to the eyes.  
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Figure S8. Frequency dependence of the in-phase χ' (top) and out-of-phase χ" (bottom) components of the 

alternating-current (ac) susceptibility for the complex 1 measured under 1500 Oe dc field in the temperature 

range of 2.00–4.35 K. The lines are guides to the eyes. 
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Figure S9. Cole-Cole plots for 1 at 1500 Oe dc field. The solid lines represent the best fit to the data. 
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Figure S10. Power law analysis in the form ln() vs ln(T). The solid line represents the best fits to the data.  
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Table S3. The relative energies of ground and low-lying Quartet spin eigenstates (cm-1). 

 

 

Table S4. The relative energies of ground and first excited Kramers doublets (KD) (cm-1). 

 1 2 

KD0 0.0  0.0 

KD1 218.27 211.8 

 

Table S5. The occupation number (occ), orbital energy (oe) and contributions (%) of five metal 

3d atomic orbitals to the active orbitals φ1-φ5 of 1. 

 occ (a.u.) oe (eV) dz2 dxz dyz dx2-y2 dxy other 

φ1 1.499 0.000 5.3 89.1 0.0 3.5 0.0 2.1 

φ2 1.467 0.424 0.0 0.0 2.0 0.0 95.7 2.3 

φ3 1.421 0.986 15.6 0.7 0.0 80.0 0.0 3.7 

φ4 1.372 2.051 74.2 8.4 0.0 12.2 0.0 5.2 

φ5 1.241 3.711 0.0 0.0 92.0 0.0 2.0 6.0 

 

  

 1 2 

4Ψ0  0.0 0.0 

4Ψ1 309.2 434.0 

4Ψ2 991.5 1221.4 

4Ψ3 3851.3 3522.0 

4Ψ4 4648.6 5529.8 
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Figure S11. The dc magnetizations and susceptibilities of 1 and 2 reproduced with the calculated spin 

Hamiltonian parameters. 

 

Figure S12. The CASSCF energy diagram and perspective views of the active orbitals (mainly 3d metal 

orbitals) as well as the electronic configuration of the ground quartet (S = 3/2) state of 2  
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Table S6. The occupation number (occ), orbital energy (oe) and contributions (%) of five metal 

3d atomic orbitals to the active orbitals φ1-φ5 of 2. 

 occ (a.u.) oe (eV) dz2 dxz dyz dx2-y2 dxy other 

φ1 1.50586 0.000 10.8 81.5 0.8 4.9 0.0 2.0 

φ2 1.46421 0.545 0.0 0.1 1.7 0.1 95.8 2.3 

φ3 1.42300 1.110 7.3 2.0 0.1 86.5 0.2 3.9 

φ4 1.41057 1.516 72.3 14.9 5.5 3.0 0.2 4.1 

φ5 1.19636 4.346 5.3 0.0 85.7 1.1 1.6 6.3 

 

Table S7. Qualitative analysis of the contribution of the SOC between the ground and the two 

lowest excited Quartets to the magnetic anisotropy based on CAS (7e, 5o)/TZ results of 1. 

 main single excitation Δml Δms contribution 

0
4

1
4 

eff
socΗ  2 3 2 2( ) ( )xy x yd d    

0 0 negative D 

1 5 yz( ) ( )xzd d   
0 0 negative D 

0
4

2
4 

eff
socΗ  1 3 2 2( ) ( )xz x yd d    

±1 ±1 positive D 

1 4 2( ) ( )xz zd d   ±1 ±1 positive D 

2 5( ) ( )xy yzd d   
±1 ±1 positive D 
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Figure S13. Composition of the wavefunctions corresponding to the ground (4Ψ0) and first two excited (4Ψ1 

and 4Ψ2) Quartets of 2.  

Table S8. Qualitative analysis of the contribution of the SOC between the ground and the two 

lowest excited Quartets to the magnetic anisotropy based on CAS(7e, 5o)/TZ results of 2. 

 main single excitation Δml Δms contribution 

0
4

1
4 

eff
socΗ  2 3 2 2( ) ( )xy x yd d    0 0 negative D 

1 5 yz( ) ( )xzd d   0 0 negative D 

0
4

2
4 

eff
socΗ  1 3 2 2( ) ( )xz x yd d    ±1 ±1 positive D 

1 4 2( ) ( )xz zd d   ±1 ±1 positive D 

2 5( ) ( )xy yzd d   ±1 ±1 positive D 
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Equation (S1) describes the relationship between the main values of g tensor of a KD and the 

related tunneling gap Δtun.  

 
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Equation (S2) describes the relationship between the main values of g tensor of a KD and the 

related μQTM. 
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A semi-quantitative analysis of the relaxation rates of QTM and direct processes in 1 and 2. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

The relaxation rate due to QTM between two quantum-mechanical state │a> and │b>, τ-1
tun, 

could be expressed as eqn (S3-a)S1 where C1 and C2 are system-specific parameters. ΔE is the 
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energy difference between │a> and │b>. If │a> and │b> are the two components a KD under 

strictly zero magnetic field, ΔE must be zero. In actual environment, small magnetic field, with 

internal or external source, always exists and thus ΔE is determined by the Zeeman interaction 

between the small magnetic field and magnetic moment of the metal ion (eqn (S3-b)).  

One common source of the internal field is the magnetic dipolar interaction due to other 

metal ions in the crystal. The applied dc field, Hdc, to suppress QTM, is the external field. Usually 

the strength of Hdc is larger than that of internal field by several orders of magnitude. Thus, if a dc 

fiels is applied, it is reasonable to only take into account of Hdc to estimate ΔE. For metal ions of 

strong easy-axis anisotropy, the component of magnetic moment along the easy-axis direction (μz) 

is significantly larger than those of transeval directions (μx,y), i.e., gz>> gx,y. Therefore, the Zeeman 

interaction, which is in principle a dot product between two vectors (magnetic field and magnetic 

component), could be approximated as the product of Z component of Hdc (Hdc,z) and that of 

magnetic moment of the metal ion (μz) in the systems of this work (eqn(3-c) and eqn(3-d)).  

To facilitate the following analysis, Hdc is assumed to be applied along the Z direction and thus 

ΔE for a KD under real environment could be approximately determined by the product of the 

magnitude of Hdc and gz (eqn(S3-e)). Based on these assumptions and approximations, the 

dependence of τ-1
tun on Hdc could be derived as eqn(S3-f). In addition, the tunneling gap (Δtun) in 

eqn(S3-a) for a KD is expressed as eqn(S1-c). 

 
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In the aspect of direct process, its relaxation rate could be expressed as eqn(S4-a)S2 where C3 is 

the system-specific parameter and ΔE is the same as in the case of QTM. The operator V1 is a time-

dependent perturbing Hamiltonian which induces the direct transition between │a> and │b>. In 

the aspect of spin-lattice coupling, V1 is the first-order contribution to the dynamic modulation of 

the crystalline electric potential generated by lattice vibration S2, i.e., phonon. 

In the case of KD under strictly zero magnetic field, τ-1
direct must be zero due to the zero 

values of both ΔE and <a|V1|b> attributed to the time-reversal symmetryS2. However, in real 

condition, small magnetic field always exists and it could work as another perturbation leading 

to non-zero values of both ΔE and <a|V1|b>. In this condition, τ-1
direct could be reformulated as 

eqn(S4-b)S2 where ΔE’ is the energy gap between ground and excited doublets. As mentioned 

before, the magnitude of internal magnetic field is quite small and the resulted direct transition 
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within the doublet is usually negligible. In other words, the influence of direct process on the 

relaxation of magnetization is only worthy of being treated when external dc field is applied. 

Based on these conditions, the dependence of τ-1
direct on Hdc could be derived as eqn(S4-c) under 

the approximation of eqn(S3-e). 
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The internal magnetic field Hdip, felt by a given metal ion and attributed to the dipolar interaction 

with the magnetic moment of another neighbouring ion i, is of the order of μi/ri
3 (eqn(S5-a)) S2. 

Since Hdip scales inversely as the third power of the distance r, the total Hdip could be approximated 

as the sum of the contributions from the nearest-neighbouring (NB) ions (eqn(S5-b)). As shown in 

our ab initio results, the magnetic anisotropies as well as the magnetic moments of the Co(II) ions 

in these two compounds are quite close to each other. Therefore the effect of local magnetic 

moment of Co(II) ion on Hdip could be assumed to be equal (eqn(S5-b)). Based on these 

considerations, the total internal field, i.e., Hdip, total, could be described by a parameter R (eqn(S5-

c)) in a semi-quantitative manner (eqn(S5-b)). The R parameters of 1 and 2 are shown in Table S9. 

Table S9. The R parameters of 1 and 2 based on the corresponding crystal structures. 

1 r (in Ǻ)a nb  

 10.80 2  

 13.13 4  

 13.79 2 R = 4.12×10-3 Å-3 

2 r (in Ǻ) n  

 10.00 2  

 11.45 1  

 11.69 2  

 12.25 2 R = 5.01×10-3 Å-3 
a the distance between the central Co(II) and a given NB Co(II). b the number of a given type of NB Co(II) 

In order to facilitate the theoretical derivation, the total internal dipolar field (eqn(S5-b)) is 

assumed to be isotropic, i.e., its components along the three Cartesian directions are all the same, 

equal to one third of the magnitude of eqn(S5-b). Since 1 and 2 possess the same coordination 

number and donor atoms as well as similar ligand fields, all the system-specific parameters C1-C8 

in the eqns above are assumed to be equal in these two compounds. 
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At first, based on eqn(S1-c) and eqn(S5-b), the tunneling gaps of 1 and 2 could be approximated 

as eqn(S6-a) and eqn(S6-b) respectively. Then, under the assumption of eqn(S3-f) the relaxation 

rates of QTM in these two compounds could be described as eqn(S6-c) and eqn(S6-d) respectively. 
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In order to suppress the QTM of 1 and 2 to the same degree (eqn(S7-a)), different dc fields, Hdc,1 

and Hdc,2 for 1 and 2 respectively, are needed(eqn(S7-b)). The relationship between these two dc 

fields could be described as eqn(S7-c). 
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With eqn(S7-c), the relaxation rates of direct process of 1 and 2, at these two dc fields 

respectively, could be expressed as eqn(S8-a) and  eqn(S8-b) under the approximation of eqn(S4-

c). As shown by eqn(S8-c), to suppress the QTM of 2 to the same degree as 1, larger dc field is 

required for 2. This larger dc field could induce stronger direct process of 2, whose rate may be as 

large as around 4 multiples of that of 1. 
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