Electronic Supplementary Information

- **Table 1S.** The fitting parameters for equation 4, determined from the spectra of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1,2,4}$ transitions of $[Eu(NP_{2}py)_{2}]^{5-1}$ complex in aqueous solution.
- Table 2S. Selected luminescent data of Eu-NP₂py and Tb-NP₂py systems
- **Table 3S**. The complex formation constants of NP₂Py with Sm³⁺, Eu³⁺, Gd³⁺ and Tb³⁺ at 25°C, *I*=0.1 mol dm⁻¹ (NaClO₄), in 1:1 and 1:2 molar ratios Ln:L.
- Table 4S. Stability constants of NP2Py with Eu³⁺ at 25°C in different ionic strength (KCl).
- Figure 1S. Fosforescence spectrum of $[C(NH_2)_3]_5[Gd(NP_2py)_2] \cdot 12H_2O$ crystals at 77K.
- Figure 2S. The plot of luminescence quantum yields of Tb:NP₂py 1:1 and 1:2 systems versus pH.
- Figure 3S. UV spectra of NP₂py ligand and Tb:NP₂py complex at various pH.
- Figure 4S. Plot of q_{H2O} versus pH of solution for the Eu-NP₂py complex with Eu:NP₂py ratio of 1:1 and 1:2. The Δq_{H2O} is the difference between q_{H2O} for 1:1 and 1:2 solutions at the same pH.
- Figure 5S. Plot of q_{H2O} versus pH of solution for the Tb-NP₂py complex with Tb:NP₂py ratio of 1:1 and 1:2.
- Figure 6S. Species distribution curves of H₆NP₂py acid (L). Charges omitted for brevity.
- **Figure 7S**. Species distribution curves for the Ln³⁺–N₂Py complexes as a function of pH for 1:1 Ln:L molar ratio (A) and 1:2 Ln:L (B). Equimolar complexes are marked in blue, biscomplexes in red color, *I*=0.1MNaClO₄, 25°C

Table 1S. The fitting parameters for equation 4, determined from the spectra of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1,2,4}$ transitions of $[Eu(NP_{2}py)_{2}]^{5-}$ complex in aqueous solution

	J _{max}	λ_{max}	Δλ
H	0.1400	583.56	1.342
¥7	0.0199	588.45	2.157
D ₀ -	0.1308	591.90	0.959
2	0.1218	593.98	1.527
	0.0256	607.02	0.6188
$^{5}D_{0}\rightarrow^{7}F_{2}$	0.1221	609.07	1.7005
	0.0213	616.28	3.3322
	0.0557	623.46	2.2017
	0.0177	628.28	1.3291
	0.0079	633.21	3.1611
	0.0129	676.80	1.8536
$^{5}D_{0} \rightarrow ^{7}F_{4}$	0.0024	682.88	2.1403
	0.0364	692.14	1.7467
	0.0051	696.62	3.5550
	0.0096	701.36	2.6330
	0.0444	703.76	0.9719
	0.0115	709.34	3.1173

Compound	λ_{max} / nm	Assignement	τ / μs	Φ/%
Eu:NP ₂ py=1:1; pH = 10	578.65	⁵ D ₀ ≫ ⁷ F ₀	360	~6
	591.80	⁵ D ₀ ≫ ⁷ F ₁		
	612.20	⁵ D ₀ ≫ ⁷ F ₂		
	650.60	⁵ D ₀ ≫ ⁷ F ₃		
	700.80	⁵D₀ ≫ ⁷ F₄		
Eu:NP ₂ py=1:2; pH = 10	578.50	⁵ D ₀ ≫ ⁷ F ₀	815	~10
	592.00	⁵ D ₀ ≫ ⁷ F ₁		
	610.80	⁵ D₀ ≫ ⁷ F₂		
	650.60	⁵ D ₀ ≫ ⁷ F ₃		
	701.30	⁵D ₀ ≫ ⁷ F ₄		
[C(NH ₂) ₃]₅[Eu(NP ₂ py) ₂]·12H ₂ O	576.90	⁵ D ₀ ≫ ⁷ F ₀	1840	~20
	582.95	⁵ D ₀ ≫ ⁷ F ₁		
	609.15	⁵ D ₀ ≫ ⁷ F ₂		
	644.05	⁵ D ₀ ≫ ⁷ F ₃		
	692.85	⁵D₀ ≫ ⁷ F₄		
Tb:NP ₂ py=1:1; pH = 10	488.50	⁵D₄ ≫ ⁷ F ₆	1550	4.5
	544.50	⁵D₄ ≫ ⁷ F₅		
	587.50	⁵D₄ ≫ ⁷ F₄		
	621.00	⁵D₄ ≫ ⁷ F3		
Tb:NP ₂ py=1:2; pH = 10	488.55	⁵D₄ ≫ ⁷ F ₆	2130	2.4
	541.45	⁵D₄ ≫ ⁷ F₅		
	588.00	5D₄ ≫7F₄		
	621.55	⁵ D ₄ ≫ ⁷ F ₃		

Table 25. Selected luminescent data of Eu-NP_2py and Tb-NP_2py systems

Metal complexes	Sm ³⁺	Eu ³⁺	Gd ³⁺	Tb ³⁺		
	Molar ratio Ln:L 1:1					
logø(LnH₃L) logø(LnH₂L) logø(LnHL) logø(LnL) logø(LnH₋1L)	37.99(3) 30.60(6) - 11.87(6) 0.91(8)	38.15(3) 31.36(7) - 12.85(8) 1.86(10)	37.85(4) 30.86(10) - 12.32(10) 1.38(10)	37.74(3) 31.72(7) 22.61(9) 13.36(7) 3.08(8)		
p <i>K</i> (LnH₃L) p <i>K</i> (LnH₂L)** p <i>K</i> (LnHL)** p <i>K</i> (LnL) p <i>K</i> (LnH₋1L)	7.39 - - 10.96 -	6.79 - - 10.99 -	6.99 - - 10.94 -	6.02 9.11 9.25 10.28 -		
	Molar ratio Ln:L 1:2					
logð(LnH₃L) logð(LnH₂L) logð(LnHL) logð(LnL)	38.00(2) 30.66(5) - 11.83(5)	38.12(2) 31.57(5) - 12.85(6)	37.96(2) 31.00(5) - 12.45(6)	37.70(4) 31.91(9) 22.82(11 13.47(10)		
$\log \theta(LnH_{-1}L)$	0.52(9)	1.69(11)	1.57(9)	3.06(10)		
$\log \theta(LnH_2L_2)$	36.49(8)	38.07(8)	37.09(7)	-		
logθ(LnL ₂) logθ(LnH ₋₂ L ₂)	16.99(8) -4.36(8)	18.44(9) -	17.88(7) -2.71(7)	17.86(9) -		
pK(LnH₃L) pK(LnH₂L)** pK(LnHL)**	7.34 ~2×9.42 -	6.55 ~2×9.36 -	6.96 ~2×9.28 -	5.79 9.09 9.35		
pK(LnL) $pK(LnH_1L)$ $pK(LnH_2L_2)$ $pK(LnH_2L_2)$	11.31 - -	11.16 - -	10.88	10.41 - -		
$pK(LnH_2L_2)$	-	-	-	-		

Table 2S. The complex formation constants of NP2Py with Sm^{III}, Eu^{III}, Gd^{III} and Tb^{III} at 25°C, *I*=0.1 mol dm⁻¹ (NaClO₄), in 1:1 and 1:2 molar ratios Ln:L.* The constants are not corrected for Na⁺ ions pairing with phosphonate groups at higher pH.

*

Comment 1. The obtained data for 1:1 and 1:2 titrations were calculated both as overplayed (giving one log β data set) and as separate batches. However, since the stoichiometry of the solutions was the crucial issue we decided to show separately calculated data in order to confirm, no changes of respective log β values in both solutions were detected, as expected. All log β s values were kept as 'refine'.

Comment 2. The stability constants of the Eu^{3+} –NP2py complexes were recalculated with the metal aqua ion hydrolysis constants for Eu^{3+} as an example among studied Ln^{III} [$Eu(OH)^{2+}$, $Eu(OH)_3$, $Eu(OH)_4^-$ and $Eu_2(OH)_3^{3+}$].¹ Solely above pH 10.5 $Eu(OH)_4^-$ species is present in the solution with a very minor contribution while the stability constants of Eu^{3+} -NP2py species were negligibly changed. Apart from it none of the hydrolytic species was found to be present in the solution, also in acidic pH range, which was crucial to verify and simultaneously exclude any hydrolytic species from the calculations.

****** pK values of deprotonation of ammonia molecules.

[1] E. Bentouhami, G.M. Bouet, J. Meullemeestre, F. Vierling and M. A. Khan, *C.R. Chimie*, 2004, **7**, 537-545. **Table 35**. Stability constants of NP2Py with Eu³⁺ at 25°C in different ionic strength (KCI).

Eu ³⁺ complexes /=0.075M /=0.1M /=0.2M /=0.5M /=1M /=2M	Eu ³⁺ complexes	/=0.075M	/=0.1M	/=0.2M	/=0.5M	/=1M	/=2M
--	----------------------------	----------	--------	--------	--------	------	------

	1:1 Molar ratio						
log <i>6</i> [EuH₃L]	37.86(1)	37.62(1)	37.37(1)	36.75(1)	36.42(1)	36.63(2)	
log <i>6</i> [EuH ₂ L]	32.01(2)	31.94(2)	31.51(2)	31.09(2)	30.66(2)	31.00(2)	
logβ[EuHL]	23.02(2)	22.91(3)	22.44(3)	22.08(3)	21.63(2)	21.93(3)	
logβ[EuL]	13.64(2)	13.63(3)	13.11(2)	12.75(2)	12.20(2)	12.34(3)	
logβ[EuH₋₁L]	3.23(2)	3.18(3)	2.56(3)	2.29(3)	1.88(2)	1.92(3)	
pK(EuH₃L)	5.85	5.68	5.86	5.66	5.76	5.63	
pK(EuH ₂ L)**	8.99	9.03	9.07	9.01	9.03	9.07	
pK(EuHL)**	9.38	9.28	9.33	9.33	9.43	9.59	
pK(EuL)	10.41	10.45	10.55	10.46	10.32	10.42	
pK(EuH ₋₁ L)	-	-	-	-	-	-	
	1:2 Molar ratio						
logβ[EuH₃L]	37.33(2)	37.31(1)	36.99(1)	36.42(1)	36.05(1)	36.34(2)	
logβ[EuH₂L]	31.68(5)	31.99(4)	30.91(2)	30.78(2)	30.16(2)	30.75(4)	
logβ[EuHL]	22.88(7)	23.39(5)	22.14(2)	22.08(3)	21.56(2)	22.28(4)	
logβ[EuL]	13.69(7)	14.12(4)	12.83(2)	12.87(2)	12.30(2)	12.88(4)	
logβ[EuH₋₁L]	-	-	-	-	1.21(8)	2.03(11)	
log6[EuL₂]⁵-	18.05(6)	18.78(4)	17.39(2)	16.89(2)	16.44(3)	16.89(7)	
p <i>K</i> (EuH₃L)	5.65	5.32	6.08	5.64	5.89	5.65	
p <i>K</i> (EuH₂L)	8.80	8.60	8.77	8.70	8.60	8.47	
p <i>K</i> (EuHL)	9.19	9.27	9.31	9.21	9.26	9.40	
p <i>K</i> (EuL)	-	-	-	-	11.09	10.85	
p <i>K</i> (EuH ₋₁ L)	-	-	-	-	-	-	

Figure 1S. Fosforescence spectrum of $[C(NH_2)_3]_5[Gd(NP_2py)_2] \cdot 12H_2O$ crystals at 77K.

Figure 2S. The plot of luminescence quantum yields of Tb:NP₂py 1:1 and 1:2 systems versus pH.

Figure 3S. UV spectra of NP₂py ligand and Tb:NP₂py complex at various pH.

Number of coordinated H₂O molecules to the Eu³⁺ cation

The number of coordinated water molecules to Eu^{3+} (q_{H_2O}) as a function of pH for solutions with $Eu:NP_2py$ ratios of 1:1 and 1:2 were determined (Figure 9) using the formula 1:^[1]

$$q_{H_2O} = 1.05 \cdot \frac{1}{T_{H_2O}} - 0.7 \tag{1}$$

where τ_{H20} is a luminescence lifetime (in ms) of the ${}^{5}D_{0}$ state. The error of estimation of q_{H20} is about ± 0.5 .

Figure 4S. Plot of q_{H_2O} versus pH of solution for the Eu-NP₂py complex with Eu:NP₂py ratio of 1:1 and 1:2. The Δq_{H_2O} is the difference between q_{H_2O} for 1:1 and 1:2 solutions at the same pH.

As it is seen in Figure 4S, the q_{H_2O} values monotonically decrease with an increase of pH. The q_{H_2O} numbers are similar within the limits of experimental error for both solutions in the pH range between 5 and 8. At pH above 8, the q_{H_2O} is about 2.5 for Eu:NP₂py 1:1 system. For the solution with Eu:NP₂py = 1:2 at pH =10.5, the q_{H_2O} is ca. 0.6. The Δq_{H_2O} values, being the difference between q_{H_2O} for 1:1 and 1:2 solutions at the same pH, dramatically increase at pH above 8. This result indicates that for solutions of Eu:NP₂py = 1:2 at pH > 8 the gradual increase of molar fraction of the [Eu(NP₂py)₂]⁵⁻ species takes place. Similar dependences were observed for Tb³⁺–NP₂py systems (Figure 5S).

Figure 5S. Plot of q_{H2O} versus pH of solution for the Tb-NP₂py complex with Tb:NP₂py ratio of 1:1 and 1:2.

[1] T. Kimura, Y. Kato, J. Alloys. Compd., 1995, 225, 284.

Figure 6S. Species distribution curves of H_6NP_2py acid (L). Charges omitted for brevity.

Figure 75. Species distribution curves for the $Ln^{3+}-N_2Py$ complexes as a function of pH for 1:1 Ln:L molar ratio (A) and 1:2 Ln:L (B). Equimolar complexes are marked in blue, biscomplexes in red color, $I=0.1MNaClO_4$, 25°C

