Electronic Supplementary Information

Self-sacrificed two-dimensional REO(CH₃COO) template assisted synthesis of ultrathin rare earth oxide nanoplates

Rui Liu, Ke Wu, Lin-Dong Li, Ling-Dong Sun, Chun-Hua Yan*

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

E-mail: yan@pku.edu.cn

Materials

Oleic acid (OA; >90%, TCI), oleylamine (OAm; >98%), cerium acetate hydrate (Ce(CH₃COO)₃ nH₂O, AR, J&K), ascorbic acid (AR, Beijing Chemical Works), acetic acid (HAc, 99%, AR, Acros), ethanol (AR, Beijing Chemical Works), and cyclohexane (AR, Beijing Chemical Works) are used as received without any further purification.

Preparation of RE(CH₃COO)₃ nH₂O

In a typical synthesis, 20 mmol La₂O₃ is added into a solution containing about 9.0 g H_2O and 150 mmol acetic acid. The resultant slurry is heated under refluxing and magnetic stirring until an optical transparent solution is formed. The solution is filtered to remove insoluble impurities (if any), and then carefully concentrated under heating until the lanthanum acetate crystallizes into powders. The powders are then dried at 140 °C overnight. All the other RE(CH₃COO)₃ nH₂O (except for Ce) were prepared following similar procedures.

Preparation of CeO(CH₃COO) ML nanoplates

In a typical synthesis, 2 mmol Ce(CH₃COO)₃ nH₂O and 1 mmol ascorbic acid are added into a mixture of 3 mmol OA and 9 mmol OAm (solution B) in a three-necked flask (100 mL) at room temperature. The resulting slurry is heated to 120 °C with vigorous stirring under vacuum. At 15 minutes after the solution reaches 120 °C, the solution is quickly extracted with a 10 mL syringe and then injected into another three-necked flask with a solution of 6 mmol OA and 18 mmol OAm (solution A) under 310 °C and N₂ atmosphere. At 30 minutes after the injection, stop heating and cool the solution down to about 80 °C under N₂ atmosphere. The products are flocculated by adding 40 mL ethanol into the reaction mixture and centrifugated under 7800 rpm for 10 min. The products are collected and washed with ethanol (40 mL) and cyclohexane (5 mL) for another 2 times.

Preparation of ceria SL nanoplates

In a typical synthesis, 2 mmol Ce(CH₃COO)₃ nH₂O and 1 mmol ascorbic acid are added into a mixture of 3 mmol OA and 9 mmol OAm (solution B) in a three-necked flask (100 mL) at room temperature. The resulting slurry is heated to 120 °C with vigorous stirring under vacuum. At 15 minutes after the solution reaches 120 °C, the solution is quickly extracted with a 10 mL syringe and then injected into another three-necked flask with a solution of 6 mmol OA and 18 mmol OAm (solution A) under 310 °C and N₂ atmosphere. At 3 minutes after the injection, inject a mixture of 3 mmol OA and 9 mmol OAm into the reaction system. 30 min later, stop heating and cool the solution down to about 80 °C under N₂ atmosphere. The products are flocculated by adding 40 mL ethanol into the reaction mixture and centrifugated under 7800 rpm for 10 min. The products are collected and washed with ethanol (40 mL) and cyclohexane (5 mL) for another 2 times. The synthesis can also be done as follows: 2 mmol Ce(CH₃COO)₃ nH₂O and 1 mmol ascorbic acid are directly added into a mixture of 5 mmol OA and 15 mmol OAm (solution B) in a three-necked flask (100 mL) at room temperature. The resulting slurry is heated to 120 $^{\circ}$ C with vigorous stirring under vacuum. At 15 minutes after the solution reaches 120 $^{\circ}$ C, the solution is quickly extracted with a 10 mL syringe and then injected into another three-necked flask with a solution of 6 mmol OA and 18 mmol OAm (solution A) under 310 $^{\circ}$ C and N₂ atmosphere. At 30 minutes after injection, the solution is cooled down to about 80 $^{\circ}$ C under N₂ atmosphere and the products are flocculated by adding 40 mL ethanol into the reaction mixture and centrifugated under 7800 rpm for 10 minutes. The product is collected and washed with ethanol (40 mL) and cyclohexane (5 mL) for another 2 times.

Preparation of ceria ML nanoplates

In a typical synthesis, 2 mmol Ce(CH₃COO)₃ nH₂O and 1 mmol ascorbic acid are added into a mixture of 3 mmol OA and 9 mmol OAm (solution B) in a three-necked flask (100 mL) at room temperature. The resulting slurry is heated to 120 °C with vigorous stirring under vacuum. At 15 minutes after the solution reaches 120 °C, the solution is quickly extracted with a 10 mL syringe and then injected into another three-necked flask with a solution of 6 mmol OA and 18 mmol OAm (solution A) under 310 °C and N₂ atmosphere. At 20 minutes after the injection, raising the reaction temperature to 380 °C (**High temperature, caution!**). 30 min later, stop heating and cool the solution down to about 80 °C under N₂ atmosphere. The products are flocculated by adding 40 mL ethanol into the reaction mixture and centrifugated under 7800 rpm for 10 min. The products are collected and washed with ethanol (40 mL) and cyclohexane (5 mL) for another 2 times.

The synthesis can also be done as follows: 2 mmol Ce(CH₃COO)₃ nH₂O and 1 mmol ascorbic acid are added into a mixture of 3 mmol OA and 9 mmol OAm (solution B) in a three-necked flask (100 mL) at room temperature. The resulting slurry is heated to 120 $^{\circ}$ C with vigorous stirring under vacuum. At 15 minutes after the solution reaches 120 $^{\circ}$ C, the solution is quickly extracted with a 10 mL syringe and then directly injected into another three-necked flask with a solution of 6 mmol OA and 18 mmol OAm (solution A) under 380 $^{\circ}$ C (High temperature, caution!) and N₂ atmosphere. At 30 minutes after the injection, the solution slowly turns from red brown to greenish yellow. The solution is then cooled down to about 80 $^{\circ}$ C under N₂ atmosphere and the products are flocculated by adding 40 mL ethanol into the reaction mixture and centrifugated under 7800 rpm for 10 minutes. The product is collected and washed with ethanol (40 mL) and cyclohexane (5 mL) for another 2 times.

Preparation of REO(CH₃COO) ML nanoplates

From LaO(CH₃COO) to TbO(CH₃COO), the synthesis method is same to that of CeO(CH₃COO) ML nanoplates, only without AA used.

For DyO(CH₃COO) to LuO(CH₃COO) and YO(CH₃COO), the synthesis process need minor adjustment. In a typical synthesis, 2 mmol Dy(CH₃COO)₃ nH_2O is added into a

mixture of 8 mmol HAc and 8 mmol OAm in a three-necked flask (100mL) at room temperature. The resulting slurry is heated to 120 °C with vigorous stirring under vacuum. At 15 minutes after the solution reaches 120 °C, the solution is quickly extracted with a 10 mL syringe and then injected into another three-necked flask with a solution of 20 mmol OAm under 340 °C and N₂ atmosphere. At 30 minutes after the injection, the solution is cooled down to about 80 °C under N2 atmosphere and the products are flocculated by adding 40 mL ethanol into the reaction mixture and centrifugated under 7800 rpm for 10 min. The product is collected and washed with ethanol (40 mL) and cyclohexane (5 mL) for another 2 times.

Preparation of RE₂O₃ SL nanoplates

The synthetic procedures for RE_2O_3 SL-nanoplates are same to that of ceria SL nanoplates, only without AA added.

Characterization

Transmission electron microscopy (TEM) images, high resolution TEM (HRTEM) images, and selected area electron diffraction (SAED) patterns were taken on a FEG-TEM (JEM-2100F, JEOL, Japan) operated at 200 kV. The powder X-ray diffraction (XRD) patterns of the as-synthesized products were obtained on a Rigaku D/MAX-2000 diffractometer (Japan) with a slit of $1/2^{\circ}$ at a 2 θ scan rate of 3 ° min⁻¹ under Cu K α radiation (λ = 1.5406 Å). The small angle X-ray diffraction (SAXRD) patterns were obtained on the same diffractometer with a slit of $1/6^{\circ}$ at a 2 θ scan rate of 1 ° min⁻¹. TG-DSC curve was measured on TA Instruments, SDT Q600 TGA/DSC.

Fig. S1. Crystal structure of typical $Ln_2O_2CO_3$ and LnOX (X = Cl, Br, I), $La_2O_2CO_3$ -II a), PrOCl b), yellow balls represent lanthanide ions, red balls represent oxygen ions, blue balls represent carbonate ions and green balls represent chloride ions.^{S1}

Fig. S2. HRTEM image of the as-synthesized CeO(CH₃COO) ML nanoplates.

Fig. S3. XRD patterns of the products obtained at different time after injection at 310 $^{\circ}$ C. The broad peak at around 20°, indicated by *, is due to the diffraction of the sample holder.

Fig. S4. FT-IR a) and SAXRD b) pattern of the as-synthesized ceria SL nanoplates. Peaks A, B, C, D in a) represent the C-H stretching vibration in (-HC=CH-), C-H stretching vibration (asymmetric and symmetric) in (-CH₂-), C-O stretching vibration (asymmetric and symmetric) in (-COO⁻) and CH₂ in-plane deformations rocking in $[-(CH_2)_n-]$ (n ≥ 6). Inset in b) is the schematic illustration of the stacking pattern of the OA-capped SL nanoplates in the SAXRD test.

Fig. S5. XRD pattern of the as-synthesized ceria SL nanoplates

Fig. S6. TEM image a), XRD pattern b) and FT-IR pattern c) of the as-synthesized Ce₂O₂CO₃ ML nanoplates, the XRD pattern in b) can match well with the XRD pattern of Ce₂O₂CO₃ synthesized at 350 °C reported in reference S2a, there is no standard XRD card of Ce₂O₂CO₃ reported to date, the reference pattern in b) is the pattern of Pr₂O₂CO₃ I coming from reference S2b. The vibration peaks noted by the arrows in c) are due to the v₂ and v₃ vibration of the carbonate ions which confirm the existence of carbonates ions in the intermediate. ^{S2c,S2d}

Fig. S7. TEM images a), b), c) and digital photo d) of the as-synthesized ceria ML-nanoplates, the scale bar is 20 nm for a) and b), and 5 nm for c).

Fig. S8. XRD pattern of the as-synthesized ceria ML nanoplates.

Fig. S9. TEM images of $LnO(CH_3COO)$. $LaO(CH_3COO)$ a); $PrO(CH_3COO)$ b); $NdO(CH_3COO)$ c); $SmO(CH_3COO)$ d); $EuO(CH_3COO)$ e); $GdO(CH_3COO)$ f); $TbO(CH_3COO)$ g); $DyO(CH_3COO)$ h); $HoO(CH_3COO)$ i); $ErO(CH_3COO)$ j); $TmO(CH_3COO)$ k); $YbO(CH_3COO)$ l); $LuO(CH_3COO)$ m); $YO(CH_3COO)$ n).

Fig. S10. XRD patterns of the as-synthesized $LnO(CH_3COO)$, the reference pattern is the XRD pattern of $LaO(CH_3COO)$ produced from reference S3.

Fig. S11. TEM images of lanthanide oxide nanoplates and nanodisks. La₂O₃ a); Pr_2O_3 b); Nd_2O_3 c); Sm_2O_3 d); Eu_2O_3 e); Gd_2O_3 f); Tb_2O_3 g); Dy_2O_3 h); Ho_2O_3 i); Er_2O_3 j); Tm_2O_3 k); Yb_2O_3 l); Lu_2O_3 m); Y_2O_3 n).

Fig. S12. XRD patterns of lanthanide oxide nanoplates and nanodisks.

Fig. S13. HRTEM images of the as-synthesized SL Eu_2O_3 a), Gd_2O_3 b) and Y_2O_3 c) nanoplates, the insets in a), b) and c) are the FFT patterns of the selected area in a), b) and c).

References

S1. (a) J. P. Attfield and G. Ferey, *J. Solid State Chem.*, 1989, **82**, 132–138; (b) R. W. G. Wyckoff, *Cryst. Struct.*, 1963, **1**, 294–296.

S2. (a) T. Arii, A. Kishi, M. Ogawa and Y. Sawada, *Anal. Sci.*, 2001, **17**, 875–880; (b) R. P. Turcotte, J. O. Sawyer and L. R. Eyring, *Inorg. Chem.*, 1969, **8**, 238–246; (c) K. Manabe and M. Ogawa, *Nippon Kagakukai-shi*, 1983, **1983**, 1092–1095; (d) J. A. Goldsmith and S. D. Ross, *Spectrochim. Acta*, 1967, **23A**, 1909–1915.

S3. M. Inoue, H. Kominami, H. Otsu and T. Inui, *Nippon Kagakukai-shi*, 1991, **1991**, 1254–1260.